DEFENSE INFORMATION INFRASTRUCTURE (DlII)
COMMON OPERATING ENVIRONMENT (COE)

PROGRAMMER'S REFERENCE MANUAL SET

VOLUME IV

JMTK Version 3.0 Developers Manual - Part 2.
(Man Pages)

28 June 1996

Prepared for:

Defense I nformation Systems Agency

TABLE OF CONTENTS

TITLE PAGE
INTRODUCTION ..o e e 1
SECTION 1 SYMBOL MANIPULATION e 3
SECTION 2 DRAWABLEDISPLAYOBJECTS 4
SECTION 3 DISPLAY SETTINGS e 6
SECTION 4 DISPLAY FEATURES e 7
SECTIONS EDIT FEATURES e 8
SECTION 6 DATATRANSFORMATIONS e 9
SECTION 7 WINDOWS . .. e 10
SECTION 8 DISPLAY VIEW . . . e 11
SECTION9SDB RETRIEVAL e 12
SECTION 10 DISPLAY UTILITIES 13
SECTION 11 COORDINATE TRANSFORMATIONS 14
SECTION 12 SYMBOL LIBRARY -ADD TOLIST 15
SECTION 13 ANALYSIS . . . e 16
SECTION 14 ERROR e 17
SECTION 15 DISPLAY QUERY e 18
SECTION 16 SYMBOL e 19
SECTION 17 WINDOWS - COMMUNICATION e 20
SECTION 18 MEMORY MANAGER e 21

ALPHABETICAL LIST OF MAN PAGES 22

GeNATAREATUIES o 23
GeNAAPIOAUCTS oo 25
GENAACK . .. 27
GenChangedFeature 28
GeNChangedMapt 29
1= o T o 31
GENCOOI . . .ottt 37
GenNDEtaCh . . 42
GenDrawingFeatUIe 43
GenNDrawingMapot 45
GNEITOr .o e 47
GenFIUShAIIREQUESESo e e 51
GENGEIDISPIAY . . .ot 52
GENINI . . 54
GEeNNEXIREQUESTo e 59
GNP ENAING . .ot 60
GENREMOVEFEALUIESo e e e e e 61
GenRemMOVEPIOAUCESo 63
GEeNRESEIVEFEAIUIE o 65
GENRESEIVEMAP . . . ot e 70
GENSENAEITOr . . o 76
GENSEIVEITOSOCKEL . . . ot 78
IMS_ ConfigADIGet . . 79
IMS_ ConfigADIS et . . .o 80
JMS DataPathnameGet e 81
JMS DBCONNEC . ..ot 82
JMS DbDISCONNECtt 84
JMS DLt . .. 85
IM S EITOr Gt . . oot e e e e e e 86

JMS INVENTOIY Go e 87

JMS MatriX Gt . . 88
JMS MatriXPUL . e 90
JMS MetadataGet 92
IMV _LoadMap .. .ot 94
IMV _UNLOAAMAD . . ettt et e e e 94
MADOIANIMALION e 95
MADOIMAD . . o 96
MAAAFEAIUNE e e 98
MAAAFEAIUIES oo e e e e e e e e 99
MAAINDUL . . o 101
MAdAOD Ot . .t 103
MAAPOINE . . o 104
MAAAPIOUCT . . o 106
MAAPTOTUCES . . . o et e e e e e e e e e e e e 107
MAATIMEOUL . . .o e e e e e e e e 109
MAAAV OIUME . o 110
MAPPIY A DULES 111
MAPPIYCOIOr . 113
MAPPIYDALAo 114
MAPPIYFI O S et . 115
MAPPIY I TYPE . . 116
MAPPIYFIIIWEIght . . . e 117
AP ON . . 118
MAPPIYHILITE . . . e 119
MAPPIYLINEStYIE . . o 120
MAPPIY LN YD . oot 121
MAPPIYLINEWIdth . . . 123
MAPPIYPICKabIlity 124
MAPPIYPIXEl . . o 126

MAPPRIYTEMPIAte 127

MAPPIYVISIDIlItY . .. 128
MChaNgEMaAD 129
MChangeSymbol 137
MChANGE T Xt . . .o 138
MChanNNelTOSOCKEL 139
MCloSEChaNNEl . . . 140
MCopYTemMpPlate 141
MCIrEAtECIASS . . oot it it 142
MCrEALELISTo 144
MCreate O eCt . .o o 146
MCrEatePOlY . . . 149
MCreateTemplate e 151
MCIEAIE T XL . . ottt 153
MCreateWinNdOWot e 155
MDEDUG . . . 157
MDD eSOV LISt . . . 159
MDEStrOYOD B Ct . . . 160
MDESITOYWINAOW . . . oot e e e e e e e e e 161
MDTAWAIC . . ettt et e e e e e e 162
MDraWBItMaD . . .o oot 164
MDIaWBOX . . . oottt e 166
MDPAWCNAT . . ot 168
MDIaWCRAILE oottt e e e 170
MDrAWCIICIE . . o o 172
MDraWEIIPSE . . .o 174
MDA LINE . o o 176
MDrawPOoIYLINe . .. e 178
MDIrawPOlYgON . . 180
MDrawReCtaNgle 182

MDE AW S B O . o .ttt e 184

MDraW S EgMENT . . . e e e 186
MDraW SIS . . 188
MDrawSymbOl . . . e 190
MDIAWTEXE . . oottt e e e e 193
MDIraWW EALNEr . . . 195
MDIrawWWOII . . . 197
=t o 198
MEXChangeObjeCto 205
MEIUSH o 207
MEIUShAIIEVENTS . . o e 208
MGEetProjectionData e 209
MGetSearchPath 210
MGELSEIVICECONIEXL . . . ot ottt ettt e e e e e e e e e 211
MGEEXWINGOW . .o o e e e e 212
MKI S IV . o o 213
MLIStFEAUIES . . o o 214
MLISIMAPS . . . oot 219
MLIStOD ECES . . .o 224
MMaAINLOOP . . oot e 226
MMapWINAOW 227
MM EIMOTY .« . o e e 228
MModifyFeature e 230
MMOAIfYFEAUIES o e 232
MMOdifyODb eCt . . . 235
MMOVEOD EC . . . 239
MNEXIEVENT .« . o e 241
MIN OO D . .t 242
MOPENChANNEl . .. 243
MPENAINGo 244

MPIXEISTOPOSItION oot 245

MPOSIIONTOPIXEIS . . . o 247
MPUIBACKEVENL 249
MQuUEryChannel 250
MOUEIYFEAIUIES o e 252
MOUEIYMAD . . e 254
MOQUEIYODJECE . . .o o 257
MQUEIYODJECIBBOX . . . oot e 259
MQUEIYWINAOWo e e e e e e e e e 261
MOUICKZOOM . . . e 262
MRECENIEIMAP . . . o e 263
MREIEASEFOCUS . . .ot 264
MREIEASEWINUOWot e 265
MReloadSearchPath 266
MREMOVEFEATUIE o e e 267
MREMOVEFEATUIESo e e e e 268
MREMOVEINPUL . . e 269
MREeMOVEODECT 270
MREMOVEPTOUUCT . . . oot e e e e e e e 271
MREMOVEPTOUUCES . . .ottt e e e e e 272
MREMOVETIMEOUL . . .ottt e e e e e e e e e e e e e 274
MREMOVEVOIUME . . o e e e 275
MREOIAEIMAPS . . . o ottt et e e e 276
MREQUESIFOCUSo e e e e 278
MRESIOIECUISOI . . .ottt et e e e e e e et e e e e e e 279
MSCaAlEMAD . . . e 280
MSENAEVENT . . . 281
MSEtANIMAtEKEYS . . . oo 283
MSEtAIIIDULES . . . o o 285
[EST=1 (o] o 287

Vi

MSetCUrsOrANNOLALIONttt e 288

MSEtCUISOIMOOE . . . ot e 290
MSEEDALAot 293
MSetEventHaNdIer 294
MSEtEVENIMASK . . .o 295
MSEtFIllOffSet . . o 296
M St Ty PE . . 297
MSetFilIV iGNt . . e 299
St Nt . . o 300
MSEtHILItE . . o o 301
MSEtHILItECOIOr . . .ot 302
MSEtINtENSIYo 303
MSetLiNE S Yl . . . 306
M St LiNE T Y P . . . oottt e e 307
MSetLiNEWIdth . .. 308
MSEtMapPBOUNGSo e e 309
MSEtMAPCOIOIS . . . oot 310
MSetMapColorsBYRGB 312
MSetMapWidth 314
MSetODJECtDAtAot 315
MSetPickability 321
M PIXEl . . ot 323
M S BP0y . . . ot 324
M S e S EgMENT . . . e 325
MSetSYMbDOISIZE 326
M St Template . . .o 327
MSetVisibilityo 329
YT . 330
MUNMAPWINGOWo e e e e e e e e e e e e 331
MUPAtECIaSS oo 332

vii

MUSENamMedWINAOW e e e e e e e 333

MUSEWINOW . . o e e e e e e e e 335
MUAIIUGE . . o e e e e 337
MUC ONVEIT . . o e e e 338
MUDISEANCE . . ot e e e e 343
MUE I O e e e e 345
MURONt 351
MUGEOPOSN .. 352
MUINIE 354
MUMGOI P OSN . 355
MUOPDEION .« . e e e e 357
MUPOSITION . . o e 360
MUR B IENCE .. o 362
MUUNIES e e 368
MUUTMIP OSSN .. e e 369

viii

INTRODUCTION

This manual presents the IMTK APIs by functions performed. All information presented in this
manual supportsthe ANSI C language. IMV_MDrawArc is an example of an APl used in the
JMTK Program. This naming format has been adopted by the IMTK Technical Working Group.
The first two characters of each APl are M for Joint Mapping. The third character identifies the
domain within IMTK according to the following scheme:

\Y = Visud

A = Analysis

S = Spatial Database Management
U = Utilities

I = Loca Imaging Manipulations (future use)

G = Geographical Data Services (future use)

R = Security, Access, and Data Releasihility (future use)
The fourth character isan underscore . The fifth and all successive characters represent the API
name. All legacy APl names used in this manual are arranged in a verb followed by noun
sequence. Example: MDrawArc. Future naming of APIswill transition to a noun-verb naming
scheme. This verb-noun scheme will be incorporated in a subsequent revision of this material.
A complete list of IMTK APIs presented in this manual is found in Appendix A. Also included in
the listing is the cross reference to the Software Requirements Specification (SRS) paragraph
which established the functional API requirement.
Each section contains a brief overview of the API functional grouping. A sample of code using
many of the APIsisin aseparate volume. Each individual API is addressed with pertinent
information formatted in categories which display individual API information as follows:

1.0 Function - contains a non technical description of what the API does.

2.0 Description - contains the technical description describing the program process and any
associated steps in the process required to reach the functional goal.

3.0 Arguments- presents and details the actual logic process and parameters.

4.0 Returns- lists values returned upon completing the function.

5.0

6.0

7.0

8.0

Dependencies - lists dependent APIs.
Messages - lists displayed messages upon failure to execute.
Other APIs - lists other related APIs.

Related Documentation - describes any documents which may be related to the API.

SECTION 1
Symbol Manipulation

The APIsin this section are legacy code and are used for manipulating symbology and setting
attributes. The following list of APIs represents the Section 1, Symbol Manipulation, capabilities
for the IMTK:

API Name Reg. Para.
JMV_MApplyAttributes 2.10
IMV_MApplyData 2.10
IMV_MA pplyFillOffset 2.4.10
IMV_MApplyFillType 2.4.10
IMV_MApplyFillWeight 2.4.10
IMV_MApplyVishility 2.10
JMV_MCopyTemplate 2.10
JMV_MModifyObject 2.10
IMV_MQueryObject 2.10
IMV_MQueryObjectBBox 2.10
JMV_MSetAttributes 2.10
JMV_MSetData 2.10
IMV_M SetFillOffset 2.4.10
IMV_MSetFill Type 2.4.10
IMV_M SetFillWeight 2.4.10
IMV_MSetObjectData 2.10
JMV_MSetVishility 2.10

SECTION 2
Drawable Display Objects

The APIsin this section are legacy code and are drawable display objects created using the
MDraw commands. These routines provide interface with the IMTK for creating graphical
objects. MDraw isthe root command (verb) followed by an object name (noun) describing the
object to be drawn. The following display objects are included in this section:

Arc Poly

Box Polygon

Char Rectangle
Char16 Sector
Circle Segment
Ellipse Slasn

Line Symbol
Polyline Text

These objects must have input from the user in order to determine the shape, size, or placement of
the object in the window.

In some cases a template must first be created in order to establish a place to install the required
input parameters.

The user isresponsible for creation of atemplate of object attributes. Thistemplate is then
applied to the window in use, thus enabling creation of the initial object attributes. Since this
window is associated with the supplied template parameter, the window id is not part of the
MDraw object routine.

The following list of APIs represents the Section 2, Draw Objects, capabilities for the IMTK:

API Name Reg. Para.
JMV_FormLine 2.10.1.12
JMV_FormPolygon 2.10.1.8
JMV_FormPolyLine 2.10.1.11
JMV _InitializePointSet 2.10.1.2
JMV_MChangeText 2.10.1.11
IMV_M_CreatePoly 2.10.1.8
JMV_MCreateText 2.10.1.11
JMV_MDrawArc 2.10.14
JMV_MDrawBitmap 2.10.4.3
JMV_MDrawBox 2.10.1.6
IMV_MDrawChar 2.10.1.2
IMV_MDrawChar16 2.10.1.2
IMV_MDrawCircle 2.10.1.3

JMV_MDrawEllipse
JMV_MDrawLine
JMV_MDrawPolygon
JMV_MDrawPolyLine
JMV_MDrawRectangle
JMV_M DrawSector
JMV_M DrawSegment
JMV_MDrawSlash
JMV_MDrawSymbol
JMV_MDrawText
JMV_M SetSegment

JMV _SetPointInterpolation

2.10.15
2.10.1.12
2.10.1.8
210.11
2.10.1.6
210.1.2
2.10.1.10
2.10.1.12
210.1.4
210.1.11
210.11
15

SECTION 3
Display Settings

The APIsin this section are legacy code. They are capable of displaying, in text fields and
formats, data associated with a symbol’s specified pixel offset or another georeferenced symbol
within amap layer. Two of the APIs specifically support and manage symbology libraries. The
graphic objects included are:

Text Size Color
Font Outlining
Style Thickness
Orientation Blinking
Brightness

The following list of APIs represents the Section 3, Display Settings, capabilities for the IMTK:
API Name Req. Para.

JMU_MuPointSizeToFontName 2.4
JMU_MuPointSizeT oFontWidth 2.4

IMV_MA pplyFont 2.10.10
IMV_MApplyHiLite 2.10.11
IMV_MApplyLineStyle 2.10.10
IMV_MApplyLineType 2.10.10
JMV_MApplyLineWidth 2.10.10
IMV_MApplyTemplate 2.10.10
JMV_M SetFont 2.10.10
JMV_MSetHiLite 2.10.11
JMV_MSetHiLiteColor 2.10.11.2
JMV_MSetLineStyle 2.10.10
JMV_MSetLineType 2.10.10
JMV_MSetLineWidth 2.10.10
IMV_MSetTemplate 2.10.10

SECTION 4
Display Features

The APIsin this section are legacy code and are capable of hiding or unhiding features from a
particular data source, symbols or map layers, and other pertinent data. The following list of
APIs represents the Section 4, Display Features, capabilities for the IMTK:

API Name Reg. Para.
MU_MuFeatureT oAcronym util
JMU_MuFeatureToString util
JMV_AppendLine 2.10.6
JMV_AppendPolygon 2.10.6
JMV_AppendPolyLine 2.10.6
JMV_MAddFeature 2.10.8.3
JMV_MAddFeatures 21084
JMV_MAddPoint 2.10.8.3
IMV_MApplyColor 2.10.7.9
IMV_MApplyPickability 2.10.8
IMV_MApplyPixel 2.10.7.9
JMV_MCreateObject 2.10.6
JMV_MCreateTemplate 2.10.8.3
JMV_MDrawWeather 2.10.6
JMV_MSetColor 2.10.7.9
JMV_MSetintensity 2.10.7.9
JMV_MSetlntensityDetall 2.10.7.9
IMV_MSetIntensityModels 2.10.7.9
IMV_MSetMapColors 2.10.7.9
IMV_M SetMapColorsByRGB 2.10.7.9
MV _M SetPickability 2.10.8
IMV_M SetPixel 2.10.7.9
JMV_MUpdateClass 2.10.8

SECTION 5
Edit Features

The APIsin this section are legacy code and are capable of moving an object from a window,
modifying one or alist of feature attributes on a map, and removing objects from alist or map
products and features from the Draw Module or geographic display. The following list of APIs
represents the Section 5, Edit Features, capabilities for the IMTK:

API Name Reg. Para.
IMV _ClearPointSet 2111
MV _FreePointSet 2111
JMV _GenRemovereatures 21111
JMV_GenRemoveProducts 21111
IMV_MModifyFeature 2.11.1.7
IMV_MModifyFeatures 2.11.1.7
JMV_MMoveObject 2.10.7.1
JMV_MRemovereature 2111
JMV_MRemovereatures 2111
IMV_MRemoveObject 21111
JMV_MRemoveProduct 21111
IMV_MRemoveProducts 21111

SECTION 6
Data Transformations

The APIsin this section are legacy code and are capable of converting a standard set of unit
conversions. Some retrieve the projection data structure in use for the window coordinate system
and others actually convert geodetic coordinates (lat/long) to point-to-pixel coordinates and vice
versa. Thefollowing list of APIs represents the Section 6, Data Transformations, capabilities for
the IMTK:

API Name Reg. Para.
JMV_ComputeScales 3.6
JMV_DegreesToRadians 2.2.2
JMV_FeetToMeters 2.2
MV _KilometersToMiles 2.2
JMV_KilometersToNautical 2.2
JMV_MetersToFeet 2.2
JMV_MetersToNautical 2.2
IMV_MGetProjectionData 3.6
JMV_MilesToKilometers 2.2
JMV_MilesToMeters 2.2
JMV_MilesToNautical 2.2
JMV_MPixelsToPosition 2.2.12
JMV_MPositionToPixels 2.2.18
JMV_NauticalToDegrees 2.2
JMV_Nautical ToKilometers 2.2
JMV_Nautica ToMeters 2.2
JMV_NauticalToMiles 2.2
JMV _PixelsToPosition 2.2.126
JMV_PositionToPixels 2.2.18
JMV_RadiansToDegrees 2211

SECTION 7
Windows

The APIsin this section are legacy code and are capable of providing a consistent interface to the
Chart Manager and to various Windows from disparate Chart Clients. The different APIs
perform tasks such as mapping a window to the screen and destroying a window in the chart
manager. The following list of APIs represents the Section 7, Windows, capabilities for the
IMTK:

API Name Reg. Para.
JMU_Mulnitialize util
JMU_MuTerminate util

JMV _GenReserveleature 3.1
JMV_GenReserveMap util
JMV_MAbortMap 2.3
JMV_MAddObject 235
JMV_MAddProduct 235
JMV_MAddProducts 235
JMV_MChangeMap 2.3
IMV_M_CreateClass 2.35
IJMV_MCresatel ist 235
IMV_M_CreateWindow 231
IMV_MDestroyList 2313
JMV_MDestroyObject 2313
JMV_MDestroyWindow 2313
JMV_MDrawWorld 2.3.1.6
IMV_MExchangeObject 2.35
IMV_MGetXWindow 2.3
IMV_MMapWindow 2.3.1.6
IMV_MReeaseWindow 2313
JMV_MReorderMaps 2.353
IMV_MResetIntensity 2.3.8.2
JMV_MUnMapWindow 2314
IMV_MUseNamedWindow 231
IMV_MUseWindow 231

10

SECTION 8
Display View

The APIsin this section are legacy code and are capable of displaying various views of the current
map and its display boundaries and width along with changing the mode of the cursor. Some of
these functions include: quickly zooming the current map view, and recentering and/or rescaling a
map. The following list of APIs represent the Section 8, Display View, capabilities for the IMTK:

API Name Reg. Para.
IMV_MQuickZoom 28.1
JMV_MRecenterMap 2.83
JMV_MScaeMap 2.8.1
IMV_MSetCursorMode 2.8
IMV_MSetMapBounds 2.8.2
IMV_MSetMapWidth 2.8.2

11

SECTION 9
SDB Retrieval

The APIsin this section represent new and legacy code. The new APIsare marked. They are
capable of various procedures regarding the Spatial Data Base. Some APIs specifically address
accessing the SDB data and terminating previous connections. Others establish unique
connections and define geographic AOIs (areas of interest). Many of these APIs perform
retrieving functions and one saves matrix datain a SDB. The following list of APIs represents the
Section 9, Spatial Data Base Retrieval, capabilities for the IMTK:

API Name Req. Para. New APIs
IMS_ConfigAOI Get new
IMS_ConfigAOIl Set new
JMS DataPathnameGet new
JMS_DbConnect new
JMS DbDisconnect new
JMS DbListGet new
JMS ErrorGet new
JMS InventoryGet 3.4.9 new
JMS MatrixGet new
JMS_MatrixPut new
JMS MetadataGet 3.3 new
JMV_MAddVolume 349

JMV_MListMaps 3.4.9

JMV_LoadMap new
JMV_MReloadSearchPath 3.4.9
JMV_MRemoveVolume 349

JMV_UnLoadMap new

12

SECTION 10
Display Utilities

The APIsin this section are legacy code and are capable of the following functions:

Abort the animation of an object

Add an input source to the context

Register atime-out with the service manager
Fush the output buffer

Fush the event queues for all channels

Get the next event from the event queue
Return the number of pending Map events
Push an event back on the input queue
Release point select focus

Remove an input source from the Chart Manager
Remove an interval timer

Request map focus

Change cursor to the normal cursor

Send amap event to other users of awindow
Set the control keys used during animation

OO0OO00000O00000000O0

The following list of APIs represents the Section 10, Display Utilities, capabilities for the IMTK:

API Name Reg. Para.
JMV_MAbortAnimation util
JMV_MAddInput util
JMV_MAddTimeOut util
JMV_MFHush util
JMV_MFHFushAllEvents util
JMV_MNextEvent util
JMV_MPending util
JMV_MPutBackEvent util
IMV_MReleaseFocus util
JMV_MRemovel nput util
IMV_MRemoveTimeOut util
JMV_MRequestFocus util
JMV_MRestoreCursor util
JMV_M SendEvent util
IMV_MSetAnimateKeys util

13

SECTION 11
Coordinate Transformations

The APIsin this section are legacy code and are discussed in the following general man pages.

The MuConvert utilities provide a set of routines for converting among three map coordinate
systems. Geodetic (GEO), Universal Transverse Mercator (UTM), and Military Grid Reference
(MGR). The MuGeoPosn routines and the MuPosition routines which provide conversions from
geodetic values to a printable string, and vice-versa. The MuMgrPosn routines provide
conversions from MGR COORD records to a printable string, and vice-versa. The MuUtmPosn
routines provide conversions from UTM values to a printable string, and vice-versa. These AP
man pages have been included in this section.

The following list of APIs represents the Section 11, Coordinate Transformations, capabilities for
the IMTK:

API Name Reg. Para.
JMU_MuGeoMgr 2.2
JMU_MuGeoPosition 1.35.2
JMU_MuGeoToString 2.2.4
JMU_MuGeoUtm 2.2.6
JMU_MuMgrGeo 2.2
JMU_MuMgrToString 2.2
JMU_MuMgrutm 2.2
JMU_MuPositionToString 2.2
JMU_MusStringToPosition util
JMU_MuUtmGeo 2.2.10.
JMU_MuUtmMgr 2.2
JMU_MuUtmToString 2.2
JMU_MuVdidGeo 2.2
JMU_MuVaidMgr 2.2
JMU_MuVdidUtm 2.2

14

SECTION 12
Symbol Library - Add to List

The APIsin this section are legacy code and are discussed in the following general man pages.

MuReference includes Chart Manager category reference routines. The MapFeatureAttributes
(MFeatAtts) structure is used to describe the list of features which are drawn onto a map
window. These APl man pages are included in this section.

The following list of APIs represents the Section 12, Symbol Library - Add to List, capabilities for
the IMTK:

API Name Reg. Para.
JMU_MuAddFesture 2.3.6.4
JMU_MuAddProjection 34
JMU_MuAddSubFesture 2.10
JMU_MuAddSubType 2.10.8.3
JMU_MuAddType 34
JMU_MuListFeatures 3.10.15
JMU_MuListProjections 3.10.11
JMU_MuListSubFeatures 3.10.40
JMU_MuListSubTypes 3.10.35
JMU_MuListTypes 3.10.35

JMU_MListFeatures

15

SECTION 13
Analysis

The APIsin this section are revised legacy code and are not available as of 10 April 1996.

The following list of APIs represents the Section 13, Analysis, capabilities for the IMTK:

API Name Req. Para.
JMA_FanAnalyze 12
JMA_ProfileAnalyze 1.3

16

SECTION 14
Error

The APIsin this section are legacy code and are discussed in the following general man pages.
MuError API includes the Chart Manager standardized error and warning utilities. GenError
API includes the Draw Module error handling routines. The GenSendError routine sends an
error to the Chart Manager.

The following list of APIs represents the Section 14, Error, capabilities for the IMTK:

API Name Reg. Para.
JMU_MuUAppError util
JMU_MuAppWarning util
JMU_MuErrorHandler util
JMU_MuErrorMsg util
IMU_MuSetErrClass util
JMU_MuSetErrorList util
JMU_MuSysError util
JMU_MuSysWarning util
JMV_GenErrorToString util
IMV_GenRequestCodeT oString 31
MV _GenResetErrorHandler util
IMV_GenResetl OErrorHandler util
JMV_GenSendError util
IMV_GenSetErrorHandler util
IMV_GenSetl OErrorHandler util
JMV_MErrorToString util
IMV_MMagorCodeToString util
JMV_MMinorCodeT oString util
IMV_MResetErrorHandler util
IMV_MResetl OErrorHandler util
IMV_MSetErrorHandler util
IMV_MSetl OErrorHandler util

17

SECTION 15
Display Query

The APIsin this section are legacy code and are capable of the following functions:

Chart Manager distance utility routines.

List the features available on the Chart Manager.

Retrieve display list of features for given geographic display.

Get current geographic display attributes for a given map window.
Get information about a Map Window.

Set the annotation for the cursor, when in normal cursor mode.

O0O0O00O0OO0

The following list of APIs represents the Section 15, Display Query, capabilities for the IMTK:

API Name Reg. Para.
JMU_MuBearing 3.10.81
JMU_MuDistance 3.10.81
JMU_MuGetPosition 1.35.2
JMU_MuGetRangeBearing 2.15.1.6
JMU_MuTargetAltitude 3.10.65
JMU_MuTargetMaxRange 3.10.65
JMV_MuListFeatures 3.10.15
JMV_MQueryFeatures 3.10.15
JMV_MQueryMap 3.10.9
IMV_MQueryWindow 3.10.11
IMV_M SetCursorAnnotation 2.15

SECTION 16
Symbol

The APIsin this section are legacy code and consist mainly of Chart Manager category reference
routines and option parsing routines. A smaller portion of the APIsin this section include the
following Chart Manager routines. geo reference position string utility routines, MGR position
string utility routines, and Chart Manager UTM position string utility routines.
The following list of APIs represents the Section 16, Symbol, capabilities for the IMTK:

API Name Req. Para.

JMU_MuOption
JMU_MuUtmPosn

JMU_MuProjectionToAcronym util

JMU_MuProjectionToString util
IMU_MuQuaGetOption util
IMU_MuQuaGetPgmName util
IMU_MuQuaUsage util
JMU_MusStringToFeature util
JMU_MuStringToGeo util
JMU_MusStringToMgr util
JMU_MusStringToProjection util
JMU_MuStringToSubFeature util
JMU_MusStringToSubType util
JMU_MuStringToType util
JMU_MuStringToUtm util
JMU_MuSubFeatureToAcronym util
JMU_MuSubFeatureT oString util
JMU_MuSubTypeToAcronym util
JMU_MuSubTypeToString util
JMU_MuTypeToAcronym util
JMU_MuTypeToString util

19

SECTION 17
Windows - Communication

The APIsin this section are legacy code. These APIs perform functions such as opening and
closing a communications channel to the Chart Manager, notifying Chart Manager of various
Draw Module activities, flushing the Draw Module request queue, and shutting down the Chart

Manager.

The following list of APIs represents the Section 17, Windows - Communication, capabilities for

the MTK:

APl Name

JMV_GenAddFeatures
JMV_GenAddProducts
JMV_GenAttach
IMV_GenChangedFeature
JMV_GenChangedMap
JMV_GenDetach
IJMV_GenDrawingFeature
JMV_GenDrawingMap
JMV_GenFlushAllRequests
JMV_GenGetDisplay
JMV_Genlnitialize
JMV_GenNextRequest
JMV_GenPending
JMV_GenServerToSocket
JMV_MChannel ToSocket
IMV_MCloseChannel
JMV_MKillServer
JMV_MMainLoop
JMV_MNoOp
JMV_MOpenChannel
IMV_MQueryChannel
JMV_M SetEventHandler
JMV_M SetEventMask
JMV_MSync

20

Req. Para.

2.10.18.3
2.35
2.3
2.3.6.4
2.3
2.3
util
util
2.3
2.3
2.3
util
util
util
util
util
util
util
util
util
util
util
2.24
util

SECTION 18
Memory Manager

The APIsin this section are legacy code and consist mainly of Chart Manager memory allocation
utilities and object search utilities.

The following list of APIs represents the Section 18, Memory Manager, capabilities for

the IMTK:
API Name Reg. Para.
IMV_MAlloc+ util
JMV_MAllocVerify util
JMV_MDebug util
JMV_MFree util
IMV_MGetSearchPath util
IMV_MReAlloc util

21

Alphabetical List of Man Pages

22

GenAddFeatures

FUNCTION

Specifiy map features which are of interest to this Draw Module.
SYNTAX

C Interface

void GenAddFeatures(server, products, numproducts) Serverld server;
FeatureProduct * products,
int numproducts;

ARGUMENTS

server The link between the Draw Module and the Chart
Manager to which it is connected. Returned by GenAttach().

products Describes alist of feature products which are of interest to this Draw Module.

numproducts
The number of products described in products.

DESCRIPTION
The GenAddFeatures() call specifies feature products that are of interest to this Draw
Module. Specifying products of interest guarantees that the Draw Module will receive a
FeatureV erifyRequest for each map file matching any of the requested products. The
Draw Module is not obligated to support al products which it specifiesin the product list.
Rather, thislist smply limits the number of FeatureV er- ifyRequests sent to it by the Chart
Manager.

The value AnyFeature serves as awildcard and is supported with any of the fieldsin the
FeatureProduct structure, including the FeatureType field. The FeatureType, and
FeatureSubType fields are the same fields used in the Map- FeatureAttributes structure.

After sending this response to the Chart Manager, the Draw Module should expect a
FeatureV erifyRequest for each feature product in the system which areinthelist. The
Draw Module can make this call at any time, adding module support for other products at
a subsequent time. The GenRemo- veFeatures() call is used for removing feature products
of interest.

ERRORS
BadServer
Aninvalid server id was used.

BadValueError
An invalid product specification was sent to Chart Manager. The specified value
for FeatureType or FeatureSubType is/are not supported by the Chart Manager.

23

SEE ALSO
GenAttach(3Gen), GenAddProducts(3Gen), GenRemoveFeatures(3Gen),
GenFeatV erify(3Gen), MuReference(3Mu)

24

GenAddProducts

FUNCTION

SYNTAX

Specify map products which are of interest to this Draw Module.
C Interface
void GenAddProducts(server, products, numproducts) Serverld server;
MapProduct *products,
int numproducts;

ARGUMENTS

server The link between the Draw Module and the Chart
Manager to which it is connected. Returned by GenAttach().

products Describes alist of map products which are of interest to this Draw Module.

numproducts
The number of products described in products.

DESCRIPTION

The GenAddProducts() call specifies map products that are of interest to this Draw
Module. Specifying products of interest guarantees that the Draw Module will receive a
Map- VerifyRequest for each map file matching any of the requested products. The Draw
Module is not obligated to support all products which it specifiesin the product list.
Rather, thislist smply limits the number of MapV erifyRe- quests sent to it by the Chart
Manager.

The value AnyMap serves as awildcard and is supported with any of the fieldsin the

MapProduct structure, including the MapType field. The MapType, and MapSubType
fields are the same fields used in the MapChangeAttributes structure.

After sending this response to the Chart Manager, the Draw Module should expect
MapV erifyRequests for all map products in the system which are in the list. The Draw
Module can make this call at any time, adding module support for other products at a
subsequent time. The GenRemoveProducts() call is used for removing products of
interest.

ERRORS

BadServer
Aninvalid server id was used.

BadValueError
An invalid product specification was sent to Chart Manager. The specified value
for MapType or MapSubType is/are not supported by the Chart Manager.

25

SEE ALSO
GenAttach(3Gen), GenAddFeatures(3Gen), GenRemoveProducts(3Gen),
GenMapV erify(3Gen), MuReference(3Mu)

26

GenAttach

FUNCTION
Attachs a Draw Module processto a Chart
Manager.
SYNTAX
C Interface
Serverld GenAttach(host)
char *hogt;
ARGUMENTS
host The name of the host where Chart Manager is exe-
cuting.
DESCRIPTION

The GenAttach() routine attaches the Draw Module process to the Chart Manager on the
specified host. A Serverld isreturned and is used to reference the connection with the
Chart Manager. Almost all calls made to the library require a Serverld as a parameter. |If
the library is unable to connect to the Chart Manager, then InvalidServerld is returned.

If the host field isaNULL pointer, then the environment variable MapHostName is
checked for, and if it is defined then its value is used as the name of the host to connect to.
If MapHostName is not a defined environment variable, then the Gen library attemptsto
connect to the local host.

RETURN
Upon successful connection, the Serverld of the connection is returned; otherwise
InvalidServerld (-1) is returned.

ERRORS
AlreadyConnected
The Draw Module already has an open connection to this Chart Manager viaa
previous GenAttach() call. No more than one connection per Chart Manager is
alowed for each Draw Module.
OutOfMemory
Unable to allocate space for this Chart Manager connection. No memory left.
SEE ALSO

GenDetach(3Gen), GenEnviron(3Gen), setenv(1)

27

GenChangedFeature

FUNCTION
Notify Chart Manager that the draw module has finished rendering a feature.

SYNTAX
C Interface
void GenChangedFeature(server)
Serverld server;
ARGUMENTS
server Thelink between the Draw Module and the Chart
Manager to which it is connected. Returned by GenAttach().

DESCRIPTION
The GenChangedFeature() call notifies the Chart Manager that the feature which the draw
module has been currently rendering has completed. This call should be sent by a Draw
Module ONLY |F the module has just received a FeatureDrawRe- quest. Because of this,
the implied parameters in the call reference the draw request currently being worked on.

When a Draw Module receives a FeatureDrawReqguest, the module can either choose to
ignore it, or render the feature as requested. If the latter action is done, the module needs
to notify the Chart Manager asto its progress (via periodic calls to GenDrawingFeature()
) and must indicate when the rendering has completed via a call to GenChangedFeature().
Cdllsto thisroutine at times other than when the Draw Module is currently rendering a
feature result in aBadTim- ing error. If, during a FeatureDrawRequest, a call to this
routine is NOT made, then the Draw Module will unconditionally send a
FeatureNotAvailable error back to the Chart Manager.

ERRORS
BadServer
Aninvalid server id was used.

BadTiming
This routine has been called at an inappropriate time. GenChangedFeature() should
be called only after a FeatureDrawRequest has been received.

SEE ALSO
GenAttach(3Gen), GenFeatDraw(3Gen), GenRequest(3Gen),
MAddFeature(3Map)

28

GenChangedMap

FUNCTION
Notify Chart Manager that the Draw Module has completed the rendering of a map.

SYNTAX
C Interface
void GenChangedMap(server)
Serverld server;
ARGUMENTS

server The link between the Draw Module and the Chart
Manager to which it is connected. Returned by GenAttach().

DESCRIPTION
The GenChangedMap() is used by a Draw Module to signify that a map which it is
currently rendering has completed. This information is needed by the Chart Manager so
that it can coordinate the map draw requests, and handle the completion of a client draw
request. This call should be sent by a Draw Module ONLY | F the module has previously
received a MapDrawRequest, and the draw module has been working on the rendering of
the map request. Because of this, the implied parameters in the call reference the draw
request currently being worked on.

When a Draw Module receives a MapDrawReqguest, the module can either choose to
ignore it, or redraw the map. If the latter choice is taken, the draw module which is
rendering the map should send periodic updates to the Chart Manager asto the progress
being made using the GenDrawingMap() call. The Chart Manager must then be notified
when the rendering completes using the GenChangedMap() call. Callsto this routine at
other times result in an error. If during a Map- DrawRequest a call to this routine isNOT
made, then the Draw Module will unconditionally send a MapNotFound error back to the
Chart Manager.

Draw Modules which are rendering a feature use the similar calling sequence of
GenDrawingFeature() and GenChanged- Feature().

ERRORS
BadServer
Aninvalid server id was used.

BadTiming
This routine has been called at an inappropriate time. GenChangedMap() should be
called only after a Map- DrawRequest has been received.

SEE ALSO

29

GenAttach(3Gen), GenChangedFeature(3Gen), GenM apDraw(3Gen),
GenRequest(3Gen), MChangeMap(3Map)

30

GenClip

FUNCTION
Line/Polygon clipping and conversion routines.
SYNTAX
C Interface
MapStatus FormLine (conv, ptl, pt2, gerl,
set)
ProjectionData *conv;
MapPoint *ptl;
MapPoint *pt2;
int gerl;
PointSet * ot
MapStatus AppendLine (conv, ptl, pt2, gerl,
set)
ProjectionData *conv;
MapPoint *ptl;
MapPoint *pt2;
int gerl;
PointSet * st
MapStatus FormPolyLine (conv, pts, npts, gcrl,
set)
ProjectionData *conv;
MapPoint *pts,
int npts;
int gerl;
PointSet * st
MapStatus AppendPolyLine (conv, pts, npts, gcrl,
set)
ProjectionData * conv;
MapPoint *pts,
int npts;
int gerl;
PointSet * st
MapStatus FormPolygon (conv, pts, npts, gerl,
set)
ProjectionData *conv;
MapPoint *pts,
int npts;
int gerl;

31

PointSet * et

MapStatus AppendPolygon (conv, pts, npts, gcrl,

set)
ProjectionData *conv;
MapPoint *pts,
int npts;
int gerl;
PointSet * st
void InitializePointSet (set)
PointSet * set;
void ClearPointSet (set)
PointSet * set;
void FreePointSet (set)
PointSet * set;
int SetPointlnterpolation (value)
int value;
ARGUMENTS
conv A projection data structure. Usually the struc-
ture which is returned by a MapDrawRequest or FeatureDrawRequest.
ptl A Geodetic point on the world. Vaueisin radi-
ans.
pt2 A Geodetic point on the world. Vaueisin radi-
ans.
pts A list of geodetic points on the world. All
values arein radians.
npts The number of pointsin thelist pts.
gcrl Line description type. Two values are supported:
RhumbL ine will connect line segments using bearing/range. GreatCircle
will connect line segments using grest circles.
set A PointSet structure. This structure contains one
or more lists of pixel points which describe the geometric entity after
calculating, interpolating, clipping, and converting.
DESCRIPTION

Chart provides a number of routines to aid Draw Modules in rendering polygons,
polylines, and lines which are geographically described using geodetic coordinates.

32

All of these routines require some sort of geodetic input coordinates, described using one
or more MapPoint structures, a coordinate conversion structure, described by the
ProjectionData structure, a line type value (usually set to RhumbL ine, however
GreatCircle is aso supported), and an initialized PointSet structure, described below.

The most basic of the routinesis FormLine(), which connects two geodetic points with an
interpolated set of points. The

returned PointSet structure contains one or more arrays of X Point records, which can be
used as input to XDrawL ines(3X11). The returned set of line segmentsis interpolated
based on the following criterea:

(2). The line connection algorithm (rhumbline or great circle).
(2). The projection (some projections project lines as curves

(3). The current interpolation value as specified in the last call to
SetPointl nterpolation().

The geodetic line will be broken into more than one set of line segments if a geodetic
boundary is crossed. Boundary crossing are projection dependent. The returned PointSet
contains information as to the number of line segment sets are calculated.

Contiguous geodetic line segments can be connected by calling FormLine(), followed by
successive calsto Append- Line(). A similar functionality exists for connecting multiple
geodetic line segments by using the FormPolyL ineg() routine. The AppendPolyL ine()
routine acts like FormPoly- Ling(). However, the output line segments are appended to
the input PointSet.

The FormPolygon() routine calculates one or more polygons which will render the input
polygon describe by the geodetic set of pointsinthe ptslist. The first and last pointsin
this list are automatically closed if the two point's values are not equal. Polygons which
cross viewing boundaries will be broken up, and connected as necessary. The AppendPo-
lygon() acts like FormPolygon(), but the output points are appended to the current
PointSet.

The Form...() routines will autometically clear up the PointSet structure prior to
calculating the output segments using the ClearPointSet() call. The Append...() routines,
on the other hand, do not clear the PointSet structure.

The call ClearPointSet() reinitializes a PointSet set structure WITHOUT freeing up
already allocated memory. Thisisamore efficient approach when numerous calculations
are being performed (such as drawing a lot of polygonsin VectorDraw), because memory
doesn't need to be constantly reallocated and freed.

FreePointSet() should always be called when the Draw Module no longer has a need for
the information in the PointSet. This both clears the PointSet structure and frees any
memory which it has previoudly alocated.

33

InitializePointSet() MUST be called prior to using a PointSet in any other routine! Thisis
extremely important. Otherwise, unexpected results can occur.

SetPointl nterpolation() can be called at any time to set a new interpolation value. The
default value is currently 20, which means that as many as 20 points will be calculated for
EACH input geodetic segment. If your draw module is already doing interpolation then
set thisvalueto 0.

Points which are so close together that their pixel equivalent values are the same are
thrown out prior to conversion. Thisis dependent of course on the current viewing scale.

RETURN
The Form...() and Append...() routines return a value of NoError if the input values are
valid and if the output PointSet is successfully created. An error value as described in the
ERRORS section will be returned otherwise.

The SetPointlnterpolation() routine returns the previous interpolation value. This allows
the caller to set the interpolation back to the previous value when done.

STRUCTURES
C Interface
typedef struct _MapPoint {
FLOAT lat;
FLOAT lon;
FLOAT alt;
} MapPoint;

typedef struct {
XPoint *points,
short npoints;
Boolean validpt;
} IntPointSet;
[*Note: ignore other fields in this structure*/

typedef struct {
IntPointSet * sets;
short nsets;
} PointSet;
/*Note: ignore other fieldsin this structure*/

The PointSet structure describes the set of points which will render the given geometric
figure. Thefieldsin this structure are as follows:

sets

A set of IntPointSet structures. Each of these structures contains a set of (X,y)
pixel values for rendering part of the geometric figure. The IntPointSet structure
is described in more detail below.

nsets
The number of sets described above. This specifies the MAXIMUM number of
pixel sets which will describe the geometric figure. Note that each set must ill be
checked for validity prior to rendering.

The IntPointSet structure describes a set of pixels used for rendering at least part of the
geometric figure. The fieldsin this structure which are of use to Draw Modules are as
follows:

points
A set of pixel values which can be used in a XDrawL ines(3X11) or
XFillPolygon(3X11) call, as appropriate.

npoints
The number of points specified in points. Draw Modules should check to insure
that thisis areasonable value (eg. greater than 1).

validpt
This value will be set to False if the pixel values are invalid, True otherwise. Draw
Modules should check to see that this value is True prior to using the points for

rendering.
ERRORS
Errors are returned in a MapStatus integer. Valid errors

include:

BadValueError
An invalid point was specified, or else the npts field is unreasonable (less than or
equal to 1).

OutOfMemory

Unable to allocate sufficient memory to perform calculations.

PointsTooClose
May be returned by FormLine() or AppendLine(). Indicatesthat no points were
produced because the too points are sufficiently close to be treated as simply

one point on the given view. This provides dynamic clipping of lines, polygons,
etc.

35

NOTES
(2). All geodetic coordinates are in radians, not degrees.

(2). When using XFillPolygon(3X11), it is probably better to specify Complex.

(3). The mode to use for either XFillPolygon(3X11) or

XDrawLines(3X11) should be CoordModeQrigin.

SEE ALSO
GenCoord(3Gen), GenFeatDraw(3Gen), GenM apDraw(3Gen),
MGetProjectionData(3Map), MPositionT oPixels(3C), MPixelsT oPosition(3C)
XDrawLines(3X11), XFillPolygon(3X11)

36

GenCoord

FUNCTION
Coordinate conversion routines.
SYNTAX
C Interface
Boolean PositionToPixels (conv, lon, lat, x, y) ProjectionData * conv;
FLOAT *|on;
FLOAT *|at;
short **X;
short *xy
Boolean PixelsToPosition (conv, X, v, lon, lat) ProjectionData * conv;
int X;
int Y,
FLOAT *|on;
FLOAT *|at;
Boolean ComputeScales (conv, lon, latl, pl x, ply, lon2, lat2,p2 X, p2y)
ProjectionData * conv;
FLOAT loni,
FLOAT latl;
FLOAT plx;
FLOAT ply;
FLOAT lonz;
FLOAT lat2;
FLOAT p2x;
FLOAT p2x;
ARGUMENTS
conv A pointer to a ProjectionData structure. Usually
the structure which is returned by a MapDrawRe- quest or
FeatureDrawRequest. Asan input to Com- puteScales(), certain elements
in the conv record must be filled in prior to caling ComputeS- cales().
Upon return, conv contains the filled in values necessary for conversion
between geodetic and pixel coordinate systems. The returned structure is
used only as an input by the PositionTo- Pixel(), and Pixel ToPosition()
callsto accompilish this.
lon
lat Longitude and latitude (in radians) of a point.
X
y X- and y- coordinate (in window coordinates) of a
point.
lonl

37

latl The 1st cross reference point (longitude/latitude)
for scaling, in radians.

pl x

ply The 1st cross reference point (x coordinate, y
coordinate), for scaling, in window coordinates.

lon2

lat2 The 2nd cross reference point (longitude/latitude)
for scaling, in radians.

p2 X

p2y The 2nd cross reference point (x coordinate, y
coordinate), for scaling, in window coordinates.

DESCRIPTION

The PositionToPixels() function converts a geodetic point on the geographic display to its
pixel vaue. If the input value is not visible on the geographic display image, then Falseis
returned; otherwise True is returned.

The PixelsT oPosition() function converts a pixel point on the geographic display to its
geodetic value. If the specified pixel position does not correspond to a point on the
viewable map surface, then False is returned; otherwise Trueisreturned. The current
projection and scale are taken into account when converting the pixel location to a geo-
detic coordinate. The pixel locations are mapped to the geographic image starting from
the upper left hand corner of the image. The point (0,0) represents the upper left hand
corner of the pixmap, and (width, height) represents the lower right hand corner. Negative
pixel values represent points above and to the left of the upper left hand corner, and may
be valid provided that the viewable map space extends beyond the corners of the window.

The ComputeScales() function calculates the scaling factors necessary to perform future
conversions between geodetic points and pixel points. Normal Draw Modules and Chart
Clients do NOT need to use this function. Chart Clients can instead use the

M PositionT oPixels(3C) and M PixelsT oPosition(3C) calls.

Pixel coordinate systems are rectangular grids of integer values. A unit of measure in
either direction corresponds to so much change in latitude and/or longitude. The unit
change is dmost aways non-linear, depending on both the

projection and earth model currently in use.

The ProjectionData structure is a structure used for converting between the geodetic and
pixel coordinate systems. Certain fields in this structure must be filled in prior to calling
ComputeScaes().

38

RETURN
For the PositionT oPixels() routine, the value True is returned when a valid conversion
takes place, and the geodetic coordinate is viewable. The value False is returned when
either the input point is not valid, or else the conversion fails, or else the geodetic point is
not visible on the geographic display. If the call fails, then the pixel points are set to O as a
precaution.

For the PixelsT oPosition() routine, the value True is returned when a valid conversion
takes place, and the pixel location lies on the world. The value False is returned when the
pixel location does not lie on the world, or is otherwise not convertible. Inthe latter case,
the geodetic coordinate is set to infinity as a precaution.

For the ComputeScales() routine, the value True isreturned if the call succeeds, and False
isreturned if the call fails. The ProjectionData structure should be used only if the call
succeeds.

STRUCTURES
C Interface
typedef struct {
Boolean whole world,;
Boolean crosses pole;
ProjectionType projection;
EarthModel system;
FLOAT pixel_x_origin;
FLOAT pixel_y_origin;
int width;
int height;
FLOAT dc_x_origin;
FLOAT dc_y_origin;
FLOAT Ing_origin;
FLOAT lat_origin;
FLOAT spi;
FLOAT sp2;
FLOAT x_scale;
FLOAT y scde;
FLOAT factor;
FLOAT dc_x_max;
FLOAT dc y max;
} ProjectionData;

The ProjectionData structure describes the coordinate transformation between geodetic
and pixel coordinate systems. Certain fields within this structure must be filled in PRIOR
to calling ComputeScales(). Other fields are filled in by the ComputeScales() routine.
The other fields in the ProjectionData structure are for internal use only. The fields which
need to befilled in by the Draw Module or Chart Client are:

39

whole_world
Set this field to True only if the geodetic coordinate system coversthe entire
world. Set thisfield to False otherwise.

projection
Set thisfield to the projection being used in the geodetic coordinate system. Valid
projection values are found on the MProjection(3Map) man page.

system
Set thisfield to the Earth Model being used. This field must be set to one of the
following values: Spherical or Elliptical.

width
Set this field to be the width of the pixel coordinate system. For example, the
Window coordinate system sets this value to the window width. The pixmap
coordinate system sets this value to the pixmap width.

height
Set thisfield to be the height of the pixel coordinate system. For example, the
Window coordinate system sets this value to the window height. The pixmap
coordinate system sets this value to the pixmap height.

Ing_origin

Set thisfield to the longitude point which corresponds to the center point of the
pixel coordinate system.

lat_origin
Set thisfield to the latitude point which corresponds to the center point of the
pixel coordinate system.

spl sp2
These values are the standard parallels being used within the particular projection.
Depending on the projection, none, one, or both of these values are used in the
projection calculations.

NOTES

(1). All geodetic coordinates are in radians, not degrees. (2). These routines are
accessible to Chart Clients as well, but are documented here because their usage is more
common to Draw Modules. They do not require any interaction with the Chart Manager.

SEE ALSO

GenFeatDraw(3Gen) GenMapDraw(3Gen), MGetProjectionData(3Map),
MPositionToPixels(3Map), MPixelsT oPosition(3Map)

40

GenDetach

FUNCTION
Close a communication channel to the Chart
Manager.
SYNTAX
C Interface
void GenDetach(server)
Serverld server;
ARGUMENTS
server The connection to the Chart Manager; returned by
GenAttach().
DESCRIPTION

GenDetach() closes the communication channel between the Draw Module and the Chart
Manager specified by server. The Chart Manager clears any products supported by this
map generator client from the server's product list, and places them back on the
unsupported product list.

ERRORS
BadServer
The server id isinvalid.
SEE ALSO

GenAttach(3Gen), GenRemoveProducts(3Gen)

41

GenDrawingFeature

FUNCTION
Notify Chart Manager that a feature is being drawn.

SYNTAX

C Interface

void GenDrawingFeature(server, percent drawn, abort) Serverld Server;
int percent drawn;
Boolean * abort;

ARGUMENTS

server Thelink between the Draw Module and the Chart

Manager to which it is connected. Returned by GenAttach().

percent drawn
The percentage of the feature which has been drawn. This value should lie
between 0 and 100.

abort

An output flag. It will be set to True if the current draw request should be
aborted. It will be set to False otherwise.

DESCRIPTION
The GenDrawingFeature() call notifies the Chart Manager that the FeatureDrawRequest
just sent by the Chart Manager to this Draw Module is being worked on. Multiple callsto
this routine should be made to indicate progress while a feature is being rendered. In fact,
Draw Modules should periodically make calls to this routine for feature products which
take awhile to draw. Generally speaking, a minimum of one call per every 5 seconds
should be attempted. Callsto Gen- DrawingFeature() are valid ONLY |IF the Draw
Module is currently processing a FeatureDrawRequest. Calls to thisroutine at other times
result in a BadTiming error.

A Draw Module which calls GenDrawingFeature() should call
GenChangedFeature() once the feature draw is complete. Failure to do so will cause the
module library to automatically send an ErrorDrawingFeature error to the Chart Manager,
which aborts rendering of this feature.

A call to GenDrawingFeature() automatically checks the pending request queue to see if
any abort requests have been received. If so, the calling module is notified via the abort
parameter that the current draw request should be terminated.

Note: failure to send a draw response within the system specified time of
COACH_MONITOR_INTERVAL will cause the

request to be terminated. Thisisto prevent draw modules from hanging up the system.

42

COACH_MONITOR_INTERVAL is asystem parameter that is at least 5 seconds.

ERRORS
BadServer
Aninvalid server id was used.

BadTiming
This routine has been called at an inappropriate time. GenDrawingFeature() should
be called only after a FeatureDrawRequest has been received.

SEE ALSO
GenAttach(3Gen), GenChangedFeature(3Gen), GenFeatDraw(3Gen), GenRequest(3Gen)

43

GenDrawingMap

FUNCTION
Notify Chart Manager that a map is being drawn.

SYNTAX
C Interface
void GenDrawingMap(server, percent drawn, abort) Serverld Server;
int percent drawn;
Boolean * abort;
ARGUMENTS

server The link between the Draw Module and the Chart
Manager to which it is connected. Returned by GenAttach().

percent drawn
The percentage of the map which has been drawn. This value should lie
between 0 and 100.

abort Anoutput flag. It will be set to True if the
current draw request should be aborted. 1t will be set to False otherwise.

DESCRIPTION
The GenDrawingMap() call notifies the Chart Manager that the MapDrawRequest just
sent by the Chart Manager to this Draw Module is being worked on. Multiple calls to this
routine can be made to indicate progress as a map is being drawn. In fact, Draw Modules
should periodically make calls to this routine for map products which take a while to
draw. Generally speaking, a minimum of one call per every 5 seconds should be
attempted. Callsto GenDrawingMap() are valid ONLY |F the Draw Module is currently
processing aMapDrawRe- quest. Callsto thisroutine at other timesresult ina

BadTiming error.

A Draw Module which calls GenDrawingMap() should call Gen- ChangedMap() once the
map draw is complete. Failure to do so will cause the module library to automatically
send a ErrorDrawingMap error to the Chart Manager, which aborts rendering of this map
image.

A call to GenDrawingMap() automatically checks the pending request queue to see if any
abort requests have been received. If so, the calling module is notified via the abort
parameter that the current draw request should be terminated.

Note: failure to send a draw response within the system specified time of
COACH_MONITOR_INTERVAL will cause the request to be terminated. Thisisto
prevent draw modules

from hanging up the syssem. COACH_MONITOR_INTERVAL isa

44

system parameter that is at least 5 seconds.

ERRORS
BadServer
Aninvalid server id was used.

BadTiming
This routine has been called at an inappropriate time. GenDrawingMap() should be
called only after a Map- DrawRequest has been received.

SEE ALSO
GenAttach(3Gen), GenChangedM ap(3Gen), GenMapDraw(3Gen),
GenRequest(3Gen)

45

GenError

FUNCTION
Draw Module error handling routines.
SYNTAX
C Interface
#include <M/Generror.h>
#include <M/Genproto.h>
void GenSetErrorHandler(handler)
GenErrorProc handler;
void GenResetErrorHandler()
void GenSetl OErrorHandler(handler) GenlOErrorProc handler;
void GenResetl OErrorHandler()
char *GenErrorToString(error code) MapStatus error code;
char * GenRequestCodeT oString(code)
GenProtocol code;
ARGUMENTS
handler An application-specific error handler.
error code
The code number of the generated error. Error codes are described in each
Draw Module manual page under the "ERRORS" heading.
DESCRIPTION

The Gen Library has two asynchronous error handler routines that are called whenever an
error occurs. One handler deals exculusively with 10 errors and the other handles all other

errors. The Gen library's default error handler prints a message to the standard error
device.

Both error handlers can be replaced by user defined handlers by using the routines

GenSetl OErrorHandler() and GenSetEr- rorHandler(). Once the error handler is replaced

by a user routine, this routine will be called whenever an error occurs. The default
handlers that the library defines can be restored with the routines:
GenResetl OErrorHandler() and GenResetErrorHandler().

Available to the user's error handlers are two routines for converting internal Chart
Manager codesto strings. These routines are: GenErrorToString(), and
GenReguestCodeT o~ String().

46

The GenErrorToString() routine provides a small text description for each error code, and
the GenRequestCodeT o- String() routine provides atext description for each Draw
Module request code in the Chart Manager. Both routines return the text string
"Unknown" in the case where the input code is not defined by the Chart Manager. Both
routines return pointers to static string buffers which should not be modified by the caller.

The application error handler routine is called with the following format whenever a Chart
Manager error occurs:

(*handler) (server, request_code, error_code)
Serverld server;
GenProtocol request code;

MapStatus error code;

The 1O error handler routine is called with the following format whenever an 1O error
OCCurs:

(*handler) (server, error_code)

Serverld server;
MapStatus error code;

The error code passed to the |O Error Handler will most likely be SocketError. Thisisa
general error indicating that an error has occurred while trying to communicate over the
socket. If more information can be obtained, a more specific error code will be returned.

The server indicates the server over which the error occurred. NOTE: Callsto routines
which do not communicate with the Chart Manager are defined to return a status
immediately.

Other cadlls, including those documented in MM emory(3Map) and MuReference(3Mu),
and which might be used by Draw Modules, invoke separate error handling. See
MError(3C) for details on this error handling.

The request code can be used by the Draw Module to handle failures due to a particular
request. The error code parameter can be used by the Draw Module to handle specific
errors.

The MResetErrorHandler() call resets the error handler back to the default error handler.

RETURN
The routines GenErrorToString() and GenRequestCodeT oString() return a string value.
Thisvaueis staticaly assigned , and should NOT need be freed using M Free.

STRUCTURES
C Interface

a7

typedef int MapStatus,
typedef short GenProtocol;
typedef void (* GenErrorProc)(

Serverld server, GenProtocol message type, MapStatus error_code);
typedef void (* Genl OErrorProc)(Serverld server, MapStatus error_code);

VALUES
MapStatus

AllocationFailure

Unable to allocate indicate resource. Specifically occurs on allocation of
colors.

AlreadyConnected
A connection to this Chart Manager already exists. Only one connection to
any one Chart Manager is alowed.

BadDisplay
The indicated GenDisplay does not exist, or else has been deleted.
BadServer
The indicated Serverld isinvalid.
BadTiming
The indicated response is inappropriate under the current circumstances.
BadValueError
An input parameter to one of the Gen library calsisinvalid.
BadWindow
The indicated geographic display window does not exist, or else has been
deleted.
DataSyncError
The Draw Module/Chart Manager protocol is out of sync. Some data may
be lost.
DisplayOpen

Unable to open a screen display within this Draw Module. This may occur
when a Draw Module tries to open another host's display, yet does not
have privilege.

FeatureAlreadyClaimed

48

SEE ALSO

The specified feature has aready been reserved by another Draw Module.
See GenReserveFeature().

MapAlreadyClaimed
The specified map has already been reserved by another Draw Module.
See GenReserveMap().

PointsTooClose
Used in certain GenClip(3Gen) calls for returning clipping information to
the caller.

OutofMemory
The system's swap storage is full and is unable to allocate additiond
memory.

SocketError
An exception occurred on one of the Gen library's communcation sockets.
Thiserror code is generally associated with the I/O error handler.

UnknownError
The specified problem is undefined.

Gen-Intro(3Gen), MError(3C), MMemory(3Map), MuReference(3Mu),ERRORS section
under each application call.

49

GenFlushAllRequests

FUNCTION
Fush the Draw Module request queue.

SYNTAX
C Interface
void GenFlushAllRequests();

DESCRIPTION
The GenFushAllRequests() routine clears the Draw Module request queue. Each pending
request isfirst looked at, and if any action is required, the default action is taken.

SEE ALSO
GenRequest(3Gen)

50

GenGetDisplay

FUNCTION
Get X Window display record from the Gen-
Display code.
SYNTAX
C Interface
#include <X/Xlib.h>
Display * GenGetDisplay(ndpy)
int ndpy;
GenDisplay _GetGenDisplay (map window)
Windowld map window;
ARGUMENTS
ndpy The GenDisplay identifier, which is afield
present in many GenRequest structures, and which serves as areference to
the X Window screen/display.
map window
The geographic window identifier.
DESCRIPTION

The GenGetDisplay() routine returns an X window display record, given an int code as an
input. The GetGenDisplay() routine returns a GenDisplay code, given the geographic
window as an input.

RETURN
The GenGetDisplay() routine returns a pointer to an X windows Display structure. The
value NULL isreturned on error.

The _GetGenDisplay() routine returns the Gen library's display identifier for a given
geographic window. The value -1 isreturned on error.

STRUCTURES
C Interface
typedef int GenDisplay;
The GenDisplay construct is used by the Gen library to reference the display
hardware. The Gen library caches references to the display hardware to minimize the
number of XOpenDisplay(3X11) calls made by a draw module.

ERRORS
BadDisplay
The specified ndpy is an invalid or non-existent display.
BadWindowld

51

The specified map window is invalid or non-existent.

SEE ALSO
XOpenDisplay(3X11)

52

Genlnit

FUNCTION
Draw Module Standardized Initialization Functions.
SYNTAX
C Interface
#include <M/Genlib.h>
#include <M/Genl nit.h>
int Genlnitialize(argc, argy, inatts, inmask, outatts) int argc; /*Input*/
char **argv; /*Input*/ DrawModulel nputAttributes * inatts; /* Input*/
MapVaueMask inmask; /*Input*/ DrawModuleOutputAttributes
* gutatts; /* Output™/
ARGUMENTS
argc A count of the number of arguments passed to the
Draw Module when the command is invoked.
argv The NULL terminated list of command line argu-
ments. See execv(3) for more information.
inatts A structure which describes special initiaization
attributes over and above the default attributes used to initialize the Draw
Modules's connection to the Chart Manager. The fieldsin this structure
are discussed further in the STRUCTURES section of this manual page.
inmask A bit mask which indicates those fields in inatts
which are being specified. Those fields not specified imply certain default
actions. The bit mask values are described in the BIT MASK section of
this manual page.
outatts A structure containing key fields and values for
communicating with the Chart Manager, and to a connected window. The
fields are discussed further in the STRUCTURES section of this manual
page.
DESCRIPTION

Draw Modules are encouraged to use the Genlnitialize() function to provide a consistent
interface to the Chart Manager and to various Chart Windows from disparate Draw
Modules. Genlnitialize() provides the following services to a Draw Module:

(1). Connection to Chart Manager.

(2). Consistent and proper error handling in the event

53

the connection fails.
(3). Consistent handling of a core set of command line options. The ability to
parse additional options specia to a particular Draw Module is aso supported.

When Genlnitialize() is invoked the following actions take place:

(1). The command line arguments are parsed against the core options and any
additional options specified by your Draw Module. Syntax errors and/or
inconsistent handling of the command line arguments results in an error message
being printed to the standard error device, the command's proper syntax being
printed out, and the program returning -1. Genlnitialize() makes use of the
MuOption(3Mu) routines to parse the command line options. See OPTIONS
section of this manual page for alist of core options supported.

(2). A connection to a Chart Manager is attempted. Generally this connection
takes place with the Chart Manager on the same machine, unless a command line
option specifies otherwise. If the connection fails, repeated attempts may be made
to connect to Chart Manager after a certain delay period. This depends on the
options specified on the command line. Eventually if no connection occurs, an
error message is printed to the standard error device, and the program returns - 1.

RETURN
Genlnitialize() returns -1 if any problems occur, and
returns O otherwise.
STRUCTURES
C Interface

typedef struct _DrawModulel nputAttributes{
Qualifiers * options,
} DrawModulel nputAttributes,

typedef struct _DrawModuleOutputAttributes {
char hostname[64];
char **extra_values;
Boolean * present;
Serverld server;
} DrawModuleOutputAttributes;

The DrawM odulel nputAttributes structure provides Genl nitial- ize() with additional
information on how the Draw Module isto beinitialized. Fields within this structure are
checked

only if the corresponding bit in the inmask bit mask is set. The fields in this structure are
described as follows:

options
A set of additional command line options which this client supports. Refer to the
MuOption(3Mu) manual page for information on filling in the fields of the
Qualifiers structure. Note that thislist isNULL terminated. If no options are
specified, then only the core set of options are validated.

The DrawM oduleOutputAttributes structure provides the Draw Module with the
information needed to communicate with the Chart Manager. Thefieldsin this structure
are described as follows:

hostname
The name of the machine where Chart Manager is running, and to which this Draw
Module has connected. Thisis usually the host name of the machine where the
Draw Module is running, but the "-host" option can be used to specify an dternate
host.

extra vaues
A NULL terminated list of command line parameters which are not options. These
are available to the Draw Module for processing.

present
A list of Boolean flags which indicate whether or not the extra options which a
Draw Module has specified are present on the command line or not. Thelist is
indexed in an identical manner to the list of Quadlif- iersin the
DrawM odulel nputAttributes structure. A value of True for one of the membersin
the list indicates that the corresponding option has been specified. A value of False
indicates that it is absent from the command line.

If no extra options have been specified, then thislist will be set to NULL. C
programmers should free this space using a call to MFree when it is no longer
needed.

server
The interna connection identifier used to communicate with the Chart Manager.
Thisvalue is needed as a parameter in virtually all Gen library routines.

OPTIONS
Genlnitialize() recognizes the following set of core command line options for all Draw
Modules which call it.

-delay time

Specify adelay period to wait between retries. The time value isin seconds.
Default value is 5 seconds.

55

-host host
Specify the name of the host the NTCS Chart Manager is running on. Thisisthe
Chart Manager to which the Client process will attempt to attach. The default
host is the machine where this Draw Module is executing.

-help
Request help information concerning qualifier usage. Thiswill print out the
command syntax, and supported options for the given Draw Module, and return -
1

-retry [retries|
Specify that if a connection to the Chart Manager fails, then this Draw Module
should periodically retry its connection to Chart Manager. The optional retries
value specifies the number of retries to make before giving up. The "-delay”
option is available to modify the period. The default number of retries, if none are
specified, is 10. However, the default option if neither "-retries’ nor "-delay” is
specified isto simply return -1 if the connection falils.

-noretry
Specify that if a connection to Chart Manager fails, then the Draw Module simply
returns-1. Thisisthe default action.

BIT MASK
The inmask parameter is a bit mask which allows the Draw Module to selectively specify
those input attributes which it has specified. The following values are allowed:

DMAII
All bits are s&t.

DMNone
No bits are set.

DMQuidlifiers
This bit indicates that the command syntax for this Draw Module, as specified in
the qualifiers field, supports additional command line options besides those
specified in the OPTIONS section of this manual page.

SEE ALSO
GenAttach(3Gen), Mulnit(3Mu), MuOption(3Mu),

56

57

GenNextRequest

FUNCTION
Obtain next request/notify from Chart

Manager.
SYNTAX

C Interface

void GenNextRequest(request)
GenRequest *request;

ARGUMENTS

request The next request on the request queue.

DESCRIPTION
GenNextRequest() obtains the next request from the Chart Manager. If the request queue
is empty, GenNextRequest() blocks until arequest isreceived. GenNextRequest() is set
up to receive events from more than one Chart Manager if the Draw Module is connected
to more than one.

A returned request may require some actions by the Draw Module prior to another call to
GenNextRequest(). For example, a GenMapDrawRequest requires the Draw Module to
call the routines GenDrawingMap() and GenChangedMap() prior to receiving another
request. Failureto do so will result in default actions taking place upon the next call to
GenNex- tRequest() or GenPending().

ERRORS
OutOfMemory
Unable to alocate memory for request record.
SEE ALSO

GenAttach(3Gen), GenChangedFeature(3Gen), GenChangedMap(3Gen),
GenDrawingFeature(3Gen), GenDrawingMap(3Gen), GenM apDraw(3Gen),
GenFeatDraw(3Gen), GenPending(3Gen), GenRequest(3Gen)

58

GenPending

FUNCTION
Return number of pending requests.

SYNTAX
C Interface
int GenPending()

DESCRIPTION
GenPending() returns the number of Chart Manager requests pending for this Draw
Module. The total number of events for al Chart Manager connectionsisreturned. The
GenNex- tRequest() call can be used to retrieve the actua request. This call should not be
made before the previous request has been serviced (see GenNextRequest()).

RETURN
The function returns the number of events still on the event queue. A valueof Ois
returned if no events are presently on the queue.

SEE ALSO
GenNextRequest(3Gen), GenRequest(3Gen)

59

GenRemoveFeatures

FUNCTION
Remove features which have been of interest to this Draw Module.

SYNTAX
C Interface
void GenRemoveFeatures(server, products, numproducts) Serverld server;
FeatureProduct *products,
int numproducts;
ARGUMENTS

server The link between the Draw Module and the Chart
Manager to which it is connected. Returned by GenAttach().

products Describes alist of feature products which are no longer of interest to this Draw
Module.

numproducts
The number of products described in products.

DESCRIPTION
The GenRemoveFeatures() call specifies features which this Draw Module is no longer
responsible for rendering. Specified products in products were previously specified in one
or more GenAddFeatures() calls. If the Chart Manager has this Draw Module responsible
for rendering a particular feature, and if one of the itemsin the products list matches this
feature, then the Chart Manager will move the feature onto the unsupported feature
product list. Additionally, a GenFeatureV erifyRequest is again sent to each Draw Module
which had earlier expressed an interest in this product using the GenAddFeatures() call.
Another Draw Module can then claim this feature using GenReser- veFeature().

The features are specified using FeatureProduct records. The value AnyFeature serves as a
wildcard and is supported with any of the fields in the FeatureProduct structure, including
the FeatureType field. The FeatureType, and FeatureSubType fields are the same fields
used in the Map- FeatureAttributes structure.

STRUCTURES
C Interface
typedef struct _FeatureProduct {
FeatureType feature type;
FeatureSubType sub type;
} FeatureProduct;

ERRORS
BadServer

60

Aninvalid server id was used.

BadValueError
An invalid product specification was sent to the Chart Manager. The specified
value for FeatureType or FeatureSubType is not supported by the Chart Manager.

SEE ALSO
GenAddFeatures(3Gen), GenRemoveProducts(3Gen), GenAttach(3Gen),
MuReference(3Mu)

61

GenRemoveProducts

FUNCTION

Remove map products which have been of interest to this Draw Module.
SYNTAX

C Interface

void GenRemoveProducts(server, products, numproducts) Serverld server;
MapProduct *products,
int numproducts;

ARGUMENTS

server The link between the Draw Module and the Chart
Manager to which it is connected. Returned by GenAttach().

products Describes alist of map products which are no longer of interest to this Draw
Module.

numproducts
The number of products described in products.

DESCRIPTION
The GenRemoveProducts() call specifies map products which this Draw Module is no
longer responsible for rendering. Specified products in products were previously specified
in one or more GenAddProducts() calls. If the Chart Manager has this Draw Module
responsible for rendering a particular feature, and if one of the items in the products list
matches this feature, then the Chart Manager will move the map onto the unsupported
map product list. Additionaly, a GenMapV erifyRequest is again sent to each Draw
Module which has earlier expressed an interest in this product using the
GenAddProducts() call. Another Draw Module can then claim this map using
GenReserveMap().

The map products are specified using MapProduct records. The value AnyMap serves as a
wildcard and is supported with any of the fields in the MapProduct structure, including the
MapType field. The MapType, and MapSubType fields are the same fields used in the
MapChangeAttributes structure.

STRUCTURES
C Interface
typedef struct _MapProduct {
MapType map_type;
MapSubType sub type;
} MapProduct;

ERRORS
BadServer

62

Aninvalid server id was used.

BadValueError
An invalid product specification was sent to the Chart Manager. The specified
value for MapType or MapSubType is not supported by the Chart Manager.

SEE ALSO
GenAddProducts(3Gen), GenRemoveFeatures(3Gen), GenAttach(3Gen),
MuReference(3Mu)

63

GenReserveFeature

FUNCTION
Request ownership of indicated feature product.
SYNTAX
C Interface
void GenReserveFeature(server, featureid,
feature type, atts, atts mask)
Serverld server; Featureld *feature id; FeatureType
feature type; GenUpdateFeatureAttributes * atts; MapV alueMask
atts mask;
ARGUMENTS

server The link between the Draw Module and the Chart
Manager to which it is connected. Returned by GenAttach().

—h

eature|

I

A unique identifier for the feature entry to be reserved by this Draw
Module. Passed to the Draw Module as part of a FeatureV erifyRequest.

feature type
An identification as to the class of the feature being reserved. Used by
Chart Manager to speed up the search for the product of interest.

A list of attributes as modified by the Draw
Module.

2
0

atts mask A mask representing the attributes from the list which the Draw Module actually
is modifying. The GenUpdMask(3Gen) manual page provides alist of
valid values for this mask.

DESCRIPTION
The GenReserveFeature() call tells the Chart Manager that this Draw Module wishes to be
responsible for al draws concerning this feature product. All subsequent requests to the
Chart Manager to draw this type of feature will result in a FeatureDrawRequest being sent
to this Draw Module. A Gen- RemoveFeatures() call that includes this feature's product
codes disables Chart Manager from sending any more FeatureDrawRequests for this
product to this Draw Module.

The GenReserveFeature() call can be made many times for the same feature entry in order
to update the modifiable parameter list. If another Draw Module has already reserved this
feature, however, a FeatureAlreadyClaimed error will occur because at most one Draw

64

Module can be considered

responsible for drawing this feature product, even if many Draw Modules need to use this
product while drawing another feature product (such as a Draw Module which
dynamically merges two database types).

STRUCTURES
C Interface

typedef struct {
FLOAT scale;
FLOAT scale lower;
FLOAT scale upper;
int nuM_projections,
ProjectionType supported projectionf NUM_PROJECTIONS];
MapVaueMask default_mask;
ColorAllocationScheme allocate;
ColorModel color_mode!;
FeatureAttributes defaults;

} GenUpdateFeatureAttributes;

The GenUpdateFeatureAttributes structure contains a set of fields which the Draw
Module can use to modify part of afeature description entry (see GenFeatEntry(3Gen) for
afull description of afeature description entry). The fields for this structure are defined as
follows:

scale
The Draw Module should provide a modified scale factor (in nautical miles per
pixel). Thisvalue is seen whenever a Chart Client uses the information from a
MListFeatures(3Map) call. The scale value calculations must be consistent across
al Draw Modulesin order for the Chart Manager to be able to accurately "glue’
together disparate features. A scale value of AnyScale is not recommended, even
though the Chart Manager doesn't flag it as an error. Thisis because certain
gpecial Chart Clients designed to identify and call up feature products would have
to estimate agood scale for displaying the feature.

scae lower
The Draw Module should provide an absolute lower bound that it supports for
drawing this feature product. The scale value isin nautical miles per pixel. This
bound can be set to AnyScale, which means that the Draw Module supports the
drawing of this product with no lower bounds on scale. The Draw Module is
guaranteed to receive no draw requests for this product at scales

smaller than scale lower.
scale_upper

65

The Draw Module should provide an absolute upper bound that it supports for
drawing this feature product. The scale value isin nautical miles per pixel. This
bounds CAN be set to AnyScale, which means that the Draw Module supports the
drawing of this product with no upper bounds on scale. The Draw Module is
guaranteed to receive no draw requests for this product at scales larger than scale

upper.

num_projections
The size of the supported projections list which gets returned. The list size can be
no larger than NUM_PROJECTIONS, which at compile time equals the number of
different projections supported by the Chart Manager.

supported projections
The Draw Module should provide alist of projections that it supports for drawing
this feature product. It is acceptable to place the wildcard projection value of
AnyProjection at any point in the list. If a Chart Client requests that a feature be
rendered in an unsupported projection, then a ProjectionNotSupported error is
sent back to the client. See MProjection(3Map) for additional information.

alocate
The color alocation scheme used for rendering the feature. Three values are
supported: AllocateReadOnly, AllocateShared, and AllocateReadWrite. The latter
value is the default, and supports the intensity color model; however, this
allocation scheme alocates precious color resources for private use. Color
resources may be shared on alimited basis, as a function of the current color
model in effect for the feature. 1f AllocateReadOnly is specified, then the color
gets shared regardless. AllocateShared works similarly to AllocateReadWrite;
however, al color resources are looked at in obtaining a color for the feature. If a
color cell isavailable, then it is allocated for private use; however, if acolor cell is
not available, then it is alocated from the current pool of alocated colors, based
on the closest matching color. Allo- cateShared is also a degraded color mode, for
cases where attempts to alocate colors in AllocateReadWrite mode fail.

color_model
The extent of sharing employed by the Chart Manager,

when the alocate scheme is AllocateReadWrite or Allo- cateShared. Four color
models are supported for features:

DoNotShareColors
This model allocates the color for exclusive use by this feature. 1t will not
share the color with other users unless there are insufficient resources to
allow for the exclusive alocation to take place. Use this model if the
feature will be modifying the color vaue internally.

ShareColors

66

This model will attempt to share this color with any other feature that
renders with the same color, and which has alocated the color in a similar
fashion.

ShareColorsinClass
This model will attempt to share this color with any other feature in the
same class which requires the same color, and which has allocated the color
inasimilar fashion. Thisisthe default model.

ShareColorsl nProduct
This model will attempt to share this color with similar feature products
which use the same color, and which have alocated the color in asimilar
fashion.

default_mask
Those feature attributes which this draw module is modifying. These so called
"default” attributes will take on their "system default” values if they are not
specified here. The "system default” values are defined on the M FeatAtts(3M ap)
manual page.

defaults
The default rendering attributes which this feature should take on. The description
of each feature rendering attribute is described in the MFeatAtts(3Map) man page.
Draw Modules are responsible for providing a default set of feature attributes for
rendering the feature. If these defaults are not provided, then system defaults for
the particular feature attribute are used instead. Client requests to render afeature
also use afeature mask to change or modify part of the default feature attributes
structure. This mask makes modifications to the default feature attributes only for
specific cases (such as a client requests that roads be drawn as dashed lines, rather
than solid lines).

ERRORS
BadServer
Aninvalid server id was used.
BadValueError
An invalid feature identifier specification, or aninvalid color model was sent to
the Chart Manager.
FeatureAlreadyClaimed
The specified feature entry has already been claimed by another Draw Module.
SEE ALSO

GenAttach(3Gen), GenFeatEntry(3Gen), GenFeatV erify(3Gen), M ChangeM ap(3Map),
MFeatAtts(3Map), MListFeatures(3Map), MProjection(3Map),

67

GenReserveMap

FUNCTION
Request rendering responsibility of indicated map product.

SYNTAX
C Interface
void GenReserveMap(server, map id, map type, atts, atts mask)
Serverld server;
Mapld map id;
MapType map type;

GenUpdateProductAttributes * atts; MapVaueMask atts mask;

ARGUMENTS

server The link between the Draw Module and the Chart
Manager to which it is connected. Returned by GenAttach().

map id A unique identifier for the map entry to be
reserved by this Draw Module. Passed to the Draw Module as part of a
MapV erifyRequest.

map type Anidentification as to the class of the map being reserved. Used by Chart
Manager to speed up the search for the product of interest.

o

ts A list of attributes as modified by the Draw
Module.

atts mask A mask representing the attributes from the list which the Draw Module actually
is modifying. The GenUpdMask(3Gen) manual page provides alist of
valid values for this mask.

DESCRIPTION
The GenReserveMap() call tells the Chart Manager that this Draw Module wishesto be
responsible for all draws concerning this map product. All subsequent requeststo the
Chart Manager to draw this type of map will result in a MapDrawRe- quest being sent to
this Draw Module. A GenRemoveProducts() call that includes this map's product code
disables Chart Manager from sending to this Draw Module any more MapDrawRe- quests
for this product.

The GenReserveMap() call can be made many times for the same map entry to update the
modifiable parameter list. If another Draw Module has aready reserved this map,
however, aMapAlreadyClaimed error will occur. At most one Draw Module can be
considered responsible for drawing this map product, even if many Draw Modules need to
use this product while drawing another map product (such as a Draw Module

68

which dynamically merges two database types).
STRUCTURES
C Interface

typedef int ColorMode!;
typedef struct {
FLOAT scale;
FLOAT scale lower;
FLOAT scale upper;
int nuM_projections,
ProjectionType supported projectionf NUM_PROJECTIONS];
ColorModel color_model;
ColorAllocationScheme color_allocation;
MapColor *color_list;
int ncolors;
} GenUpdateProductAttributes;

The GenUpdateProductAttributes structure contains a set of fields which the Draw

Module can use to modify part of a map description entry (see GenMapEntry(3Gen) for a
full description of a map description entry). The fields for this structure are defined as
follows:

scale

The Draw Module should provide a modified scale factor (in nautical miles per
pixel). Thisvalueis seen whenever a Chart Client uses the information from a
MListMaps(3Map) call. The scale value calculations must be consistent across all
Draw Modulesin order for the Chart Manager to be able to accurately "glue”
together disparate maps. A scale value of AnyScale is not recommended, even
though the Chart Manager doesn't flag it as an error. Thisis because certain special
Chart Clients designed to identify and call up map products would have to estimate
agood scale for displaying the map.

scae lower

The Draw Module should provide an absolute lower bound which it supports for
drawing this map product. The scale value isin nautical miles per pixel. This bound
can be set to AnyScale, which means that the Draw Module supports the drawing
of this product with no lower bound on scale. The Draw Module is guaranteed to
receive no draw requests for this product at scales smaller than scale lower.

scale_upper

The Draw Module should provide an absolute upper bound that it supports for
drawing this map product. The

scale value isin nautical miles per pixel. This bound can be set to AnyScale, which
means that the Draw Module supports the drawing of this product with no upper
bound on scale. The Draw Module is guaranteed to receive no draw requests for

69

this product at scales larger than scale upper.

num_projections
The size of the supported projections list which gets returned. The list size can be
no larger than NUM_PROJECTIONS, which at compile time equals the number of
different projections supported by the Chart Manager.

supported projections
The Draw Module should provide alist of projections that it supports for drawing
this map product. It is acceptable to place the wildcard projection value of
AnyProjection at any point in the list. Multiple references to a projection indicate a
preference for drawing the map product in that projection. Chart Clients which
request a new geographic display with a projection field set to AnyProjection allow
the Chart Manager to determine the best projection to use based on projection
preferences for each of the draw requests which make up the request. See
M ChangeM ap(3Map) and MProjection(3Map) for additional information.

color_model
This field identifies the color modeling scheme employed for drawing this map.
The valid values for thisfield are as follows:

OneColorSetPerMap
When set to this value, the color map is unique for the given map. A color
map must be supplied, indicating the number of colors needed to render the
map product. Example: Compressed Aeronautical Charts (CACs) employ
aunigue color map for each chart.

OneColorSetPerMapProduct
When set to this value, the color map is unique across all mapsin agiven
map product. A map product is uniquely defined by its map type and map
subtype fields (see GenMapEntry(3Gen)). All instances for a given map
product share the same color map in this case. Only the first map being
reserved needs to supply a color map. All smilar map products use the
same color scheme for rendering. Example, SPOT satellite images, atype
of IMAGMap employs a grey scaling to render the

image.

OneColorSetPerMapClass
When set to this value, the color map is unique across all mapsin agiven
map class. A map classis uniquely defined by its map type field (see
GenMapEntry(3Gen)). All map products for a given map class will share
the same color map. Only the first map product in the class needs to supply
acolor map. All map products in the same class will use the same color
scheme for rendering. Example: ARC Digitized Raster Graphics (ADRG)
map products use a common color map.

70

UseFBModel

When set to this value, the color model used is based on the foreground
and background color values currently in effect. These colors are set and
modified by the M SetMapColors(3C) and M SetM apColorsByRGB(3C)
library calls, as well as via any call which includes the MapColorAttributes
structure (see MColor(3Map). When in this mode, the list and ncolors
fields are ignored, because the color values are derived from library calls.
Example: Vector map products such as World Vector Shoreline and
World Database use this scheme.

color_allocation
Specifies the type of color allocation needed for rendering this map product. The
following values are alowed:

AllocateReadWrite

Specifies that the color map should be modifiable. Color maps allocated in
this manner support the intensity model, which is modified by the
M SetIntensity(3Map) library call.

AllocateReadOnly

Specifies that the color map is non-modifiable. Color maps allocated in this
manner do not support the intensity model, nor can they be changed by any
of the other color models (such as UseFBMo- del). However, colors
alocated in this manner may be shared among many Chart Clients and
Draw Modules.

AllocateShared

Specifies that the color map is modifiable to alimited degree. The color
will be shared with other maps and features which alocate the same color.
This color follows the intensity color

model, but should otherwise be treated as a nonmodifiable color.
AllocateShared is used as afirst choice degraded mode if the Chart
Manager runs out of colors when alocating maps. This allows intensity to
be supported, but to a more limited degree than AllocateReadOnly.

AllocateTrueColor

color_list

Specifies that no color map is provided. Furthermore, the Draw Module
can render this map only on hardware which supports TrueColor color
maps. A Draw Module may choose to render maps using a number of
different color mapping schemes. In this case, the Draw Module should
select one of the other two allocation schemes. When a Map-
DrawRequest is subsequently received, the ColorAt- tributes can then be
referenced to see if TrueColor is supported.

71

Specifies the list of colors required for rendering the map. Values are specified as
triples of red, green and blue. Where intensity is supported, the Draw Module
supplies the full intensity values here. Values of red, green, and blue must follow
the XColor(3X11) model and should lie between 0 and 255. If the allocation
scheme which is specified is AllocateTrueColor, then a color map should not be
specified. The Draw Module is then responsible for the pixel values which are
written to the display hardware. See M Color(3Map) for information about the
MapColor structure.

ncolors
The number of colorsin the supplied color map.

ERRORS
BadServer
Aninvalid server id was used.

BadValueError
An invalid map identifier specification, or an invalid color model was sent to Chart
Manager. Note: if no color model is specified, Chart Manager will try and match
this map product to an existing color model from a previous map product. If no
match occurs, Bad- ValueError is returned.

MapAlreadyClaimed
The specified map entry has aready been claimed by another Draw Module.

NOTES
(1). When colors are allocated AllocateReadWrite, limited color resources, and/or the
resident display hardware, may result in the colors actually be alocated AllocateShared
(first choice), or AllocateReadOnly. The draw request provide information on the color
alocation which actually occurs. (2). Colors allocated AllocateRead\Write may be
modified by the Draw Module, if desired. However, conflicts can arise when in degraded
mode, and another map alocates some of these colors as AllocateShared.

SEE ALSO
GenAttach(3Gen), GenMapEntry(3Gen), GenMapV erify(3Gen), MChangeMap(3Map),
MColor(3Map), MListMaps(3Map), MProjection(3Map), M Setintensity(3Map),
M SetMapColors(3C), M SetMapColorsByRGB(3C),

72

73

GenSendError

FUNCTION
Send an error to the Chart Manager.

SYNTAX
C Interface
void GenSendError(server, error code)
Serverld server;
MapStatus error code;
ARGUMENTS

server The link between the Draw Module and the Chart
Manager to which it is connected. Returned by GenAttach().

error code

The error code to be sent. Valid errors which can be sent are described
under VALUES.

DESCRIPTION
The GenSendError() call indicates to the Chart Manager that an error has occurred in the
indicated map window. Errors sent from Draw Modules are routed into the Chart
Manager's error handling mechanisms, and may get sent to individual Chart Clients. Some
errors get sent by the Draw Module library automatically if the Draw Module failsto
perform some required actions (see GenMapDraw(3Gen), for example). The
GenSendError() routine should be called only if something unexpected happens. For
example, if while drawing a map the network suddenly goes down, an ErrorDrawingMap
call might be appropriate. But if the GenDrawingMap() call has already been made, then
GenSendError() needs to be called to abort the draw.

VALUES
The following are legal values for error code:

BadMapEntry
An error occurred while trying to draw the requested map or feature. Thiserror
associates the cause with bad data formats, missing files, or other related problems.

ErrorDrawingMap
An error occurred while trying to draw arequested map. Thisis a catch-all error
code for handling problems with a draw map request.

ErrorDrawingFeature
An error occurred while trying to draw a requested feature. Thisis a catch-all
error code for handling problems with a draw feature request.

74

FeatureNotAvailable
The specified feature is unavailable.

MapDrawAborted
The specified map draw was aborted due at the request of the Chart Manager.

OutOfMemory
The Draw Module is unable to allocate enough memory.

ProjectionNotSupported
The Draw Module does not support this projection.

SystemNotSupported
The Draw Module does not support this earth model.

UnresponsiveDrawModule
Suggested error to send if Draw Module would core dump. Note that Draw
Modules can trap certain errors using Unix signal handling. See signal(3) for more

information.
ERRORS
BadServer
Aninvalid server id was used.
BadTiming
An attempt to send an error to the Chart Manager occurred at an inappropriate
time. Thisroutine should be called ONLY while servicing a draw request.
BadValueError
An invalid error code was specified.
BadwWindowld
The specified map window is invalid, does not exist, or has been deleted.
SEE ALSO

GenAttach(3Gen), GenMapDraw(3Gen), GenError(3Gen),
GenMapV erify(3Gen), MError(3C)

75

GenServerToSocket

FUNCTION
Return the file descriptor of a Chart Manager's socket connection.

SYNTAX
C Interface
int GenServerToSocket(server)
Serverld server;
ARGUMENTS
server The connection to the Chart Manager; returned by
GenAttach().

DESCRIPTION
The GenServerToSocket() function returns the file descriptor of the connection to a Chart
Manager, or (-1) if the specified Chart Manager isinvalid. This function is useful if a
Draw Module application isto make a call to select(2). This call is provided if a Draw
Module needs to use the file descriptor, but is not recommended. Requests, errors, and
responses should be handled through the routines provided in the Gen library.

RETURN
The file descriptor for the socket isreturned. The value -1 isreturned in the case of an
error.

ERRORS
BadServer
The Server id was invalid.

SEE ALSO
GenAttach(3Gen), GenDetach(3Gen), intro(2), select(2)

76

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

JMS_ConfigAOIGet

FUNCTION: Retrieve the current AOI setting for the database connection.

DESCRIPTION: This function will access the database connection that was established
through a previous call to IMS_DbConnect and retrieve the AOI. The default AOI isthe
AOQI of the database the application is connected to. The AOI can be modified with a call
to IMS_ConfigAOI Set.

This function will allocate memory for the AOI. Therefore the IMTK application is
responsible for freeing the memory when it is no longer needed.

SYNTAX:

#include "JMS.h"

#include"JMS _Errors.h"

tJmsStatus IMS_ConfigAOI Get(tJmsConnection conn_id, tJmsArea**pAoi)

ARGUMENTS:
conn_id Used to identify the unigue connection to the SDB.
pAOI The address of a structure pointer of the type tJmsArea.

RETURNS: A status of type tdmsStatus is returned, as defined below. The return status
will equal IMS_OPERATION_OK when the AOI has been successfully retrieved, and
returned in the pAoi structure.

DEPENDENCIES: TBD

ERROR MESSAGES: The following messages are displayed when errors occur:

JMS INVALID_CONNECT_ID: Connection Id is not recognized
JMS AOI_NOT_DEFINED: The AOQI for the connection has been set

OTHER APIs. Seeadso IMS _ConfigAOISet and JIMS_DbConnect.

RELATED DOCUMENTATION: Not applicable.

77

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

JMS_ConfigAOISet

FUNCTION: Define the geographic area of interest (AOIl) of a spatial database
connection.

DESCRIPTION: JMS_ConfigAOISet stores an area of interest that is associated with a
specific database connection. The AOI that is stored is used as afilter for fulfilling
database requests/services. Thiswill limit the amount of data that needs to be processed
by the database functions.

In order to move away from the former paradigms of rectangular AQIs, this function
expects alist of geographic points of latitude/longitude pairs which are stored as decima
degreesin clockwise order. The minimum number of pointsis four.

SYNTAX:

#include "JMS.h"

#include"JMS _Errors.h"

tJmsStatus IMS_ConfigA Ol Set(tJmsConnection conn_id, tJmsArea*pAoi);

ARGUMENTS:
conn_id Used to identify the unigue connection to a SDB.
pAoi Holds the number of points and the latitude/longitude pairs for the points.

RETURNS: A status of type tdmsStatus s returned. The status will equal
JMS OPERATION_OK when the passed AQI bas been successfully set for the specified
database connection.

DEPENDENCIES: TBD

ERROR MESSAGES: The following messages are displayed when errors occur:

JMS INVALID _CONNECT _ID: Invalid database connection
JMS NON_INTERSECT: AOQI does not intersect connected database
JMS AOI_DESCREPANCY: AOQI structureisinvalid

OTHER APIs. Seeaso IMS_ConfigAOI Get.

RELATED DOCUMENTATION: Not applicable.

78

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

JMS_DataPathnameGet

FUNCTION: Retrieve the directory path to the requested data type.

DESCRIPTION: This API returns the paths to the data for a specified data type and a
given data base and within the established AOI. The function will return the paths to all
the data that intersect the AOI defined for the database connection. The API allocates the
necessary memory fro the list to be populated. Therefore the application is responsible for
freeing the path list when it is no longer needed.

SYNTAX:

#include "JMS.h"

#include "JMS_Errors.h"

tJmsStatus IMS_DataPathnameGet(tJmsConnection conn_id,
tJmsDataTlype *data_type,
tJmsPathStruct *pathlist

ARGUMENTS:

conn_id Used to identify the unigue connection to the SDB.
data_type | dentifies the specific data type such as DCW or CADRG
pathname Is a character pointer where the directory paths will be placed

RETURNS: This API returns a status of type tdmsStatus, as defined below, when an
error occurs. Otherwise the returned status equals IMS_OPERATION_OK along with
the list of directory paths in pathlist.

DEPENDENCIES: TBD

ERROR MESSAGES: The following messages are displayed when errors occur:

JMS INVALID_CONNECT_ID: Returned when the connection id is not recognized.
JMS INVALID_DATATYPE : Returned when the data type is not valid.

OTHER APIs. Seeaso IMS_ConfigAOl Set

RELATED DOCUMENTATION: Not applicable.

79

1.0

2.0

3.0

4.0

JMS_DbConnect

FUNCTION: Establish a unique connection to a JMTK geospatial data base.

DESCRIPTION: JMS _DbConnect is called to create a unigue connection to aJMTK
geospatial data base that has previoudly been created through the Spatial Database
Manager application. This connection identifies the specific data base that will be
accessed and how the SDBM isto interact with that database for all subsequent data
requests and/or service calls. Therefore, the IMS_DbConnect function must be called
prior to any other Spatial Data Base Module service functions. Thisincludes all but the
JMS DbListGet functionin IMTK Version 3.0.

An error is returned if the connection cannot be made. A successful connection will return
a unique connection id that is used by other APIsto identify the caller and the database
to be accessed. Currently there are no limits to the number of database connection that
can be made, athough there are practical limits.

When a connection to a specific database can be established, the connection will inherit the
databaseOs AOI as the default AOI. The application can revise the connection AOI with
acal to IMS_ConfigAOI Set.

When invoked this function allocates memory for the connection to store additional
information created by other SDBM API calls. Therefore the IMTK application should
call the IMS_DbDisconnect function when the connection is no longer needed so that the
reserved memory can be freed.

SYNTAX:

#include "JMS.h"

#include"JMS _Errors.h"

tJmsStatus IMS_DbConnect(char *name, tJmsConnection conn_id)

ARGUMENTS:

name A character string identifying a specific geospatial data base. Notethat a
list of available database names can be retrieved through the API call
JMS DbListGet.

conn_id A variable of the type tJmsConnection that identifies a unique connection

to a specific spatia database.

80

5.0

6.0

7.0

8.0

9.0

RETURNS: Returns a status of type tdmsStatus, as defined below, and a unique
connection id of type tJmsConnection when the status equals IMS_OPERATION_OK.

DEPENDENCIES: TBD

ERROR MESSAGES: The following messages are displayed when errors occur:

JMS CONNECT_FAILURE_1: Cannot locate the list of databases
JMS CONNECT_FAILURE_2: Cannot read the database list file

JMS DB_OFFLINE: Requested database is off-line

JMS VERSION_MISMATCH: Software and database versions donOt match
JMS OUT_OF MEMORY: Out of memory

JMS NO _DB_SPECIFIED: A database name was not supplied

OTHER APIs. Seerelated APIsJMS DbDisconnect, IMS _ConfigAOIl Set, and
JMS DbListGet.

RELATED DOCUMENTATION: Not applicable.

81

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

JMS_DbDisconnect

FUNCTION: Terminate a previous successful database connection.

DESCRIPTION: MS_DbDisconnect is called to close an existing database connection.
Thiswill free any memory that has been alocated to maintain the connection. An error is
returned if the connection id is not recognized.

SYNTAX:

#include "JMS.h"

#include "JMS_Errors.h"

tdmsStatus IMS_DbDisconnect(tJmsConnection conn_id)

ARGUMENTS:

conn_id Used to identify the unique connection to the SDB.

RETURNS: A status of type tdmsStatus is returned. The status will equal

JMS OPERATION_OK when the connection is successfully closed otherwise it will be
et to the error status defined below.

DEPENDENCIES: TBD

ERROR MESSAGES: The following messages are displayed when errors occur:
JMS INVALID_CONNECT_ID: returned when the connection id is not recognized.

OTHER APIs. Seealso IMS_DbConnect.

RELATED DOCUMENTATION: Not applicable.

82

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

JMS_DblListGet

FUNCTION: Retrievesalist of spatial database names.

DESCRIPTION: JMS DbListGet is called to retrieve alist of available databases that
have been created by the Spatial DataBase Manager (SDBM) application. The database
names along with their access path are maintained in a private SDBM file. Thisfileis
located in the directory defined by environment variable IMS DBHOME. This function
will attempt to access the file, alocate memory to store the list, process the file and return
alist of the database names contained within it.

SYNTAX:

#include "JMS.h"

#include"JMS _Errors.h"

timsStatus IMS DbListGet(tJmsDbList **db_list)

ARGUMENTS:

db_list A structure pointer that will be populated with the list of available database
that have been imported by the SDBM and the number of them. The
JMTK application is responsible for freeing the memory alocated for the
list when it is no longer needed.

RETURNS: Returns a status of type tdmsStatus, as defined below, and thelist of

databases in the argument variable db_list when the status equals
JMS OPERATION_OK.

DEPENDENCIES: TBD

ERROR MESSAGES: The following messages are displayed when errors occur:

JMS INVALID_HOME: returned when the environment variable

JMS DBHOME cannot be found.
JMS DBLIST_MISSING: returned if the SDBM cannot find the database list file.
JMS DBLIST_ERROR: returned if the database list file cannot be processed.

OTHER APIs. None.

RELATED DOCUMENTATION: Not applicable.

83

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

JMS_ErrorGet

FUNCTION: Retrieve the text message for the specified error code

DESCRIPTION: Thisfunction provides the capahility to retrieve the text message for an
error code produced by the SDBM. The function accepts the error code and a character
pointer to store the message in. The function will allocate memory to store the error
message and thus the application programmer is responsible for freeing the memory when
it isno longer needed.

SYNTAX:

#include "JMS.h"

#include "JMS_Errors.h"

tJmsStatus IMS _ErrorGet(tJmsStatus error_code, char **error_buff)

ARGUMENTS:

error_code One of the recognized IMS error statusOs.

error_buf A character pointer which will be used to allocate memory and store the
returned error message.

RETURNS: Thisfunction will return a status of type tJmsStatus equal to
JMS_OPERATION_OK when the error message is successfully returned in error_buf.
Otherwise it will return a status as defined below.

DEPENDENCIES: TBD

ERROR MESSAGES: The following messages are displayed when errors occur:

JMS INVALID_ERROR_CODE: returned when the error code is not
recognized.

OTHER APIs. A complete list of the error codes can be found in the public include file
JMS Errors.h

RELATED DOCUMENTATION: Not applicable.

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

JMS_InventoryGet

FUNCTION: Retrieve adatainventory for the specified database connection.

DESCRIPTION: ThisAPI iscalled to retrieve alist of the data volumes (i.e. DCW,
CADRG, WVS, etc.) which are stored within the spatial database identified by the
connectionid. The calling application will pass the address of the data_list structure to
populate. This API will allocate memory for the list. Therefore the IMTK application is
responsible for freeing the list when it is no longer needed.

SYNTAX:

#include "JMS.h"

#include"JMS _Errors.h"

tJmsStatus IMS _InventoryGet(tJmsConnection conn_id ,
tJmsDblnventory **data_list)

ARGUMENTS:
conn_id Used to identify the unigue connection to the SDB.
data list The address of a structure pointer where the inventory will be placed.

RETURNS: This API will return a status of type tdmsStatus, as defined below when an
error has occurred. If the return status equals IMS_OPERATION_OK the number of
data volumes that are within or partially within the established AOI for the database
connection will be returned in data_list.

DEPENDENCIES: TBD

ERROR MESSAGES: The following messages are displayed when errors occur:

JMS METADATA_PROCESS ERR: returned when the metadata cannot be
processed.

JMS INVALID_CONNECT_ID: returned when the connection is not
recognized.

OTHER APIs. None.

RELATED DOCUMENTATION: Not applicable.

85

1.0

2.0

3.0

4.0

JMS_MatrixGet

FUNCTION: Retrieve the matrix data from a spatial database

DESCRIPTION: This API will retrieve a previously stored matrix file from a spatial
database. The application specifies the database containing the matrix through the
connection id and the volume it is stored under through the data_type parameter. The
filename of the matrix data, received from the call to IMS_MatrixPut identifies the specific
matrix file to retrieve. The remaining parameters are returned as defined above.

SYNTAX:
#include "JMS.h"
#include "JMS_Errors.h"

tJmsStatus IMS_MatrixGet(tJmsConnection conn_id,
char *data_type,
char *filename,
tJmsArea *pAoi,
int *row,
int *col,
double * X,
double * 3y,
short *matrix data)
ARGUMENTS:
conn_id | dentifies which database to retrieve the matrix dataform.

data_type | dentifies which volume of the specified data base to retrieve the matrix
data. Thisis defined by the application. Any character string is acceptable.

matrix_data Will contain the actual dataretrieved from the database.

pAoi Will hold the area of interest which encompasses the matrix data.
row Will contain the number of rows of data within the matrix.

col Will contain the number of columns of data within the matrix.
spex Will contain the spacing in the x direction of the matrix

spcy Will contain the spacing in the y direction of the matrix

86

5.0

6.0

7.0

8.0

9.0

RETURNS: This API returns a status of type tdmsStatus set to IMS _OPERATION_OK
when the requested matrix data is successfully retrieved along with all input arguments
populated. When errors are encountered the return status will be set as defined below.

DEPENDENCIES: TBD

ERROR MESSAGES: The following messages are displayed when errors occur:

JMS INVALID_CONNECT_ID: returned when the connection ids is not recognized.
JMS DATA_READ_ERROR: returned when the matrix cannot be read.

OTHER APIs. Seedso JMS_MatrixPut.

RELATED DOCUMENTATION: Not applicable.

87

1.0

2.0

3.0

4.0

JMS_MatrixPut

FUNCTION: Save matrix datain a spatial database

DESCRIPTION: This API will storea JIMTK application defined matrix datain a specific
gpatial database . The application specifies which spatial database to store the matrix in
viathe connection id. The volume in which the matrix data will be located is defined via
the data_type parameter. The application must also define the AOI covered by the data,
the number of rows and columns along with the spacing in each direction.

The API will validate the parameters received and to store the matrix under the specified
volume. If the volume does not exigt, it will create it. The filename that the matrix is
stored in will be created by the API and returned to the application.

SYNTAX:

#include "IMS.h"

#include "JMS_Errors.h"

tJmsStatus IMS_MatrixPut(tJmsConnection conn_id,

char *data_type,
short *matrix_data,
tJmsArea *pAoi,
int row,
int col,
double Spex,
double spey,
char *filename)
ARGUMENTS:
conn_id | dentifies which database to store the matrix datain.
data_type | dentifies which volume of the specified data base will receive the matrix

data. Thisis defined by the application. Any character string is acceptable.
matrix_data Isten actua datato be stored in the database.
pAoi Defines the area of interest which encompasses the matrix data.
row I's the number of rows of data within the matrix.

88

5.0

6.0

7.0

8.0

9.0

col |'s the number of columns of data within the matrix.
SpCX |'s the spacing in the x direction of the matrix
spcy Is the spacing in the y direction of the matrix

RETURNS: The API returns a status of type JmsStatus equal to IMS_ OPERATION_OK
when the matrix data has been successfully stored in the database along with the filename
that data was stored under. Otherwise, an error status is returned.

DEPENDENCIES: TBD

ERROR MESSAGES: The following messages are displayed when errors occur:

JMS INVALID_CONNECT_ID: returned when the connection id is invalid.
JMS IMPORT_DATA_ERROR: returned when the matrix cannot be stored.
JMS MALLOC_ERROR: returned when memory cannot be allocated.

OTHER APIs. Seedso IMS MatrixGet.

RELATED DOCUMENTATION: Not applicable.

89

1.0

2.0

3.0

4.0

JMS _MetadataGet

FUNCTION: Retrieve metadatafor adatabase, a data volume or a dataset within a
gpatial database.

DESCRIPTION: JMS MetadataGet is called to retrieve metadata that is maintained for
the database, the data volumes or the datasets. The first two arguments are mandatory.
The IMTK application must identify the database to retrieve metadata from by providing a
connection id. The application must also identify which level of metadata is being
requested. Level 1 isassociated with the database metadata providing information relative
to the entire database. Level 2 metadata contains information for a specific data volume (
i.e. DCW, WVS. CADRG, DTED, etc.). Level 3 describes the actual datasets in a data
volume.

The next two arguments, data_type and data_set are optional depending upon the level
of metadata requested. If the application isrequesting Level 1 (database metadata) then
both data type and data set are ignored and the application can passa NULL inthese

locations. If the application request Level 2 metadata, then data_type is mandatory and
data_set isignored. A Level 3 request requires both the data type and data_set to be
populated.

The next argument is a variable argument list that isterminated by aNULL. Thisvariable
list contains pairs of Jns Metadata resources followed by the variable or structure to
populate. The application must pass a pointer to the variable or structure. The APl will
alocate space, as appropriate so the application is responsible for freeing the memory
when it is no longer needed.

SYNTAX:

#include "JMS.h"

#include"JMS_Errors.h"

tJmsStatus IMS MetadataGet(tJmsConnection conn_id, int level,
char *data type, char *data set,

va list,
NULL)
ARGUMENTS:
conn_id: | dentifies which database to access.
level | dentifies the type of metadata to retrieve where LV L 1=database,

LVL2=volume, LV L3=dataset.

90

5.0

6.0

7.0

8.0

9.0

data_type |'s the name of the data volume to access if the level is LVL2 otherwise this

argument should be NULL.
data_set Is the name of the dataset within the data volume that is to be accessed if
the level isset to LVL3, otherwise this argument should be set to NULL.
va list Isavariable argument list containing pairsof resources and appropriate

variables to storethemin. Thislist isterminate by a NULL.

RETURNS: This API return will return an error status of the type tdmsStatus, as defined
below, when and error is encountered. Otherwise, the passed variables pointers are
populated and the return status will equal IMS_OPERATION_OK.

DEPENDENCIES. TBD

ERROR MESSAGES: The following messages are displayed when errors occur:

JMS CONNECTIONID_ERROR: Connection id error.

JMS LEVEL_ERROR: Level error.

JMS UNKNOWN_METADATA_TYPE: Unknown metadata type.
JMS UNKNOWN_DATA_TYPE: Unknown data type.

JMS UNKNOWN_DATASET: Unknown dataset.

JMS INVALID_RESOURCE_LIST: Invalid resource for level
JMS METADATA_PROCESS ERR: Metadata process error.

OTHER APIs. A ligt of all the Jmsresourcesis provided in the public include file IMS.h

RELATED DOCUMENTATION: Not applicable.

91

FUNCTION

JMV_LoadMap

JMV_UnLoadMap

Load and unload map data

SYNOPSIS

DESCRIPTION
JMV_LoadMap() registers the map data products found in the argument pMapDataPath
with the IMTK Visual domain server. All associated map data product indices are created
under the directory specified in the argument pOutputDir. The map datatype is specified

by the argument |Atom. The following map data product type convenience macros are
provided:

JMV_UnLoadMap() unregisters the map data product specified by the argument IMapld

#incldue <IMV/Load.h>

JMV_MapObjectiD
JMV_LoadMap(
p_str pMapDataPath,
p_str pOutputDir,
JMV_Atom IAtom
)i

int
IMV_UnLoadMap(

p_str pOutputDir,
JMV_MapObjectID Mapld
);

JMV_ATOM_DTED
JMV_ATOM_RPF
JMV_ATOM_VPF

and removes any indices in the argument pOutputDir.

RETURN VALUE
JMV_LoadMap() returnsa IMV_MapObjectID. The define constant BAD_OBJECT is

returned upon failure.

JMV_UnLoadMap() returns a boolean value, UNLOAD_SUCCESS or

UNLOAD_FAILURE

92

MAbortAnimation

FUNCTION
Abort the animation of an object.

SYNTAX
C Interface
void MAbortAnimation(channel, window)
Channel channdl;
Windowld window;
ARGUMENTS
channel The connection to Cartographer; returned from
M OpenChannel().
window The window where animation is currently under way.
DESCRIPTION

MADbortAnimation aborts the animation of an object. If the current animation is a create
type, then the object is removed from the screen, and the object isfreed. If the animation
isamodify type, then the object is left as it was before the animation started.

ERRORS
BadChannel
An invalid channel id was used.

Badwindowl!d
An invalid window id was used.

SEE ALSO
M CreateObject(3C), MCreateText(3C), MModifyObject(3C)

93

MAbortMap

FUNCTION
Abort current map draw command.
SYNTAX
C Interface
void MAbortMap(channel, window)
Channel channdl;
Windowld window;
ARGUMENTS
channel The connection to the Chart Manager; returned from
M OpenChannel.
window The window to which the abort is directed.
DESCRIPTION

MADbortMap aborts the current draw request, if oneis currently being processed. The
abort map isfiltered to all connected Draw Modules which are processing a request for
this map. If the map has already been partialy drawn (eg. the new areais being viewed),
then only those maps which have not completed are aborted. Depending on the state of
the map system when the abort is requested, one of two things can occur:

(1) If adraw isalready partially complete, then those maps which have been already
drawn are preserved, and a ChangeMapNotify or UpdateMapNotify is sent to all
interested Clients.

(2) If no maps have yet been drawn, then the request is completely abandoned, and the
previous map is preserved. Inthis case, an AbortMapNotify is sent to all interested
Clients.

In both cases, the library error handler for the Client requesting the change map request,
or in the case of an internal request, the Client which owns the window, will receive an
error notification with value MapDrawAborted.

ERRORS
BadChannel
An invalid channel id was used.

Badwindowl!d
An invalid window id was used.

94

MapDrawAborted
Sent autometically to the Client originally making the change request, or else sent
to the window's owner.

SEE ALSO
M ChangeM ap(3Map), MEvents(3C)

95

MAddFeature

FUNCTION
Add specified feature to a map.
SYNTAX
C Interface
void MAddFeature(channel, window, feature)
Channel channdl;
Windowld window;
MapFeatureAttributes *feature;
ARGUMENTS
channel The connection to the Chart Manager; returned from
M OpenChannel.
window The window on which the feature is to be
displayed.
feature A map feature to be added to the map. See
MFeatAtts(3Map) for information on this structure's contents.
DESCRIPTION

MAddFeature adds the specified feature to the currently drawn map. Some map products
may not support feature overlays. A FeatureNotSupported error occursin this case. Also
some overlay features may not be available on all servers. Inthiscase, a
FeatureNotAvailable error occurs. The MListFeatures(3Map) call provides alist of
supported features in the server.

If the specified feature or features are already present on the display list then this call will
modify the feature's attributes according to the attributes specified in the FeatureAttributes
record. If the feature isnot present on the display list, then it is added to it. Note that the
sub type field supports the wildcard value AnyFeature to specify an entire class of features
to be added.

ERRORS
See MAddFeatures for a synopsis of possible errors.

SEE ALSO
MAddFeatures(3Map), M ChangeMap(3Map), MFeatAtts(3Map),
MFeatM ask(3Map), MM odifyFeature(3Map), MModifyFeatures(3Map),
MRemoveFeature(3Map), MRemoveFeatures(3Map), MuReference(3Mu)

96

MAddFeatures

FUNCTION
Add specified features to a map.
SYNTAX
C Interface
void MAddFeatures(channel, window, feature, nfeatures)
Channel channdl;
Windowld window;
MapFeatureAttributes *features;
int nfeatures,
ARGUMENTS
channel The connection to the Chart Manager; returned from
M OpenChannel.
window The window on which the features are to be
displayed.

features A list of map features to be added to the map.
See MFeatAtts(3Map) for information on the contents of each record.

nfeatures The size of the feature list specified in feature.

DESCRIPTION
MAddFeatures adds the specified features to the currently drawn map. Some map
products may not support feature overlays. A FeatureNotSupported error occursin this
case. Also some overlay features may not be available on all servers. Inthiscase, a
FeatureNotAvailable error occurs. The MListFeatures(3Map) call provides alist of
supported features in the server. Note that this call should not be used to modify existing
features, but smply to add new features.

If the specified feature or features are already present on the display list then this call will
modify the feature's attributes according to the attributes specified in the FeatureAttributes
record. If the feature is not present on the display list, then it is added to it. Note that the
sub type field supports the wildcard value AnyFeature to specify an entire class of features
to be added.

ERRORS
BadChannel
An invalid channel id was used.

97

Badwindowl!d
An invalid window id was used.

BadValueError
Aninvalid or non-existent feature value was specified.

ErrorDrawingFeature
An error occurred while drawing the specified feature, which is described in the
accompanying MapErrorCodel n- formation structure.

FeatureNotSupported
The specified feature is not supported on the current map. An accompanying
MapErrorCodel nformation structure specifies the unsupported feature.

FeatureNotAvailable
The specified map feature is not available. Thisis probably because no feature
generator exists on-line for drawing it. The accompanying MapErrorCodel nforma
tion structure specifies the unavailable feature.

MaxScale
The current view is zoomed too far out to display the given feature. The feature
product generating the error is provided in an accompanying MapErrorCodel nfor-
mation structure.

MinScale
The current view is zoomed too far in to display the given feature. The feature
product generating the error is provided in an accompanying MapErrorCodel nfor-
mation structure.

SEE ALSO
MAddFeature(3Map), MChangeMap(3Map), M FeatAtts(3Map), MFeatM ask(3Map),
MM odifyFeature(3Map), MM odifyFeatures(3Map), MRemoveFeature(3Map),
MRemoveFeatures(3Map), MuReference(3Mu)

98

MAddInput

FUNCTION
Add an input source to the context.

SYNTAX
void MAddInput(fd, mask, proc, data)
int fd;
int mask;
M CallbackProc proc;
Pointer data;
ARGUMENTS
fd Specifies the source file descriptor on a Unix
based system.
mask Specifies the condition mask that tells when the
routine should be called. Valid entries for thisfield are ServiceReadM ask,
ServiceWriteMask, Ser- viceExceptMask, or ServiceAllMask.
proc Specifies the procedure that is to be called when
the condition is satisfied
data Specifies the argument that isto be passed to the
specified procedure when the callback is called.
DESCRIPTION

The MAddInput routine registers with the Service manager a source of datathat isto be
monitored. The data source can be any sink or source of datathat has an associated file
descriptor. The source is monitored for a given condition, and when the condition is met
the specified routine is called.

STRUCTURES
C Interface

typedef void * M CallbackProc();

A CallbackProc is the name of afunction to specify asa
callback procedure.

ERRORS
BadValueError
The file descriptor for a channel has been specified. Y ou cannot specify an input
handler for a Chart communications channel, as this would overwrite the input

99

handler for Chart.

SEE ALSO
MRemovel nput(3Map), M SetEventHandler(3Map)

100

MAddODbject

FUNCTION
Add an object to alist or class.
SYNTAX
C Interface
void MAddObject(channel, list, object)
Channel channdl;
Objectld list;
Objectld object;
ARGUMENTS
channel The connection to Cartographer; returned from
M OpenChannel.
list Thelist or class to which the object will be
added.

object The object to be added to the list.

DESCRIPTION
MAddObject adds the specified object to the list or class. The attributes of the object
remain unchanged, it smply becomes a member of the list.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid object id was used.

SEE ALSO

MRemoveObject(3C), MDestroyList(3C), MDestroyObject(3C),
MExchangeObject(3C)

101

MAddPoint

FUNCTION
Add a single point to the end of a polyline or polygon.
SYNTAX
C Interface
void MAddPoint(channel, object, points, location, max points)
Channel channel;
Objectld object;
MapPoint *points;
int location;
int max points,
ARGUMENTS
channel The connection to Cartographer; returned from
M OpenChannel.

object The location for which to place the segment.

points The point or points to be added to the Polygon or
Polyline.

location The place to insert the points. This value represents the index of the vertex
where the points are to be inserted. A negative value indicates to insert the
points at the beginning of the polygon or polyline, and a value greater than
or equal to the current number of points indicates to append the points.

max points
The number of points being inserted.

DESCRIPTION
MAddPoint inserts one or more points into a Polyline or Polygon object, without the
overhead of destroying and creating the object. This command can be used to append
points to the end of a polygon or polyline by providing a location value which exceeds the
current number of points in the object.

Using this command on objects that are not of type Polyline or Polygon will cause a
BadValueError.

ERRORS
BadChannel
An invalid channel id was used.

102

BadObjectld
An invalid object id was used.

BadValueError
The object is not a Polyline or Polygon object.

SEE ALSO
MDrawPolyLine(3C), MDrawPolygon(3C), M SetObjectData(3C)

103

MAddProduct

FUNCTION
Add specified map product to a map.

SYNTAX
C Interface
void MAddProduct(channel, window, product)
Channel channdl;
Windowld window;
MapProductAttirbutes * product;
ARGUMENTS
channel The connection to the Chart Manager; returned from
M OpenChannel.
window The window on which the product isto be
displayed.

product A map product to be added to the map display.

DESCRIPTION
MAddProduct adds the specified product to the currently drawn map. Some map
products may not be drawable in the current display. This routine uses the current
boundary attributes, and color criteriato display the given map product. The product is
overlayed onto the existing geographic display, and may occlude products which have
been previoudy drawn. If the map product has aready been drawn, then the request is
simply ignored. A description of the product attributes is found on the
M ProductAttributes man page.

ERRORS
See MAddProducts for a synopsis of possible errors.

SEE ALSO
MAddProducts(3Map), M ChangeM ap(3Map), MRemoveProduct(3Map),
MRemoveProducts(3Map), MuReference(3Mu)

104

MAddProducts

FUNCTION
Add the specified map products to a map.
SYNTAX
C Interface
void MAddProducts(channel, window, products, nproducts)
Channel channdl;
Windowld window;
MapProductAttributes *products,
int nproducts,
ARGUMENTS
channel The connection to the Chart Manager; returned from
M OpenChannel.
window The window on which the products are to be
displayed.

products A list of map productsto be added to the map
display.

nproducts The number of products to be added.

DESCRIPTION

MAddProducts adds the specified list of map products to the currently drawn map. Some
map products may not be drawable in the current display. This routine uses the current
boundary attributes, and color criteriato display the supplied map products. The products
are overlayed onto the existing map display, and may occlude products which have been
previously drawn. If the map products have aready been drawn, then the request is

simply ignored. A description of the product attributes is found on the
M ProductAttributes man page.

ERRORS
AlreadyDrawingMap

A map draw command is already in progress for the specified window.

BadChannel
An invalid channel id was used.

BadMapEntry
An error occurred while drawing specified map product,

105

due to bad data format, missing files, or other related problems. The
MapErrorCodel nformation structure indicates the product generating the error.

Badwindowl!d
An invalid window id was used.

BadValueError
Aninvalid or non-existent map product was specified.

DuplicateMap
The specified map product is already being partialy or fully displayed. The
duplicate portion is ignored; however, additional draw requests occur for the part
which hasn't been drawn.

ErrorDrawingMap
An error occurred for a specific draw request.

MapDrawAborted
The specified draw request was aborted at the request of some Chart Client.

MapTooSmall
The specified boundary results in an image which is too small to draw.

ProductNotFound
The specified request resulted in no map products being drawable which match the
given product(s).

ProjectionNotSupported
The specified product is not supported in the currently drawn projection.

SystemNotSupported
The specified product is not supported in the current earth model.

TooManyMaps
The specified product results in more than MAX_MAPS draw requestsiif fully
satisfied. At most MAX_MAPS maps may supported inside a map window at
once. The net effect isto draw up to MAX_MAPS maps, and trim requests
beyond this.

SEE ALSO

MAddProduct(3Map), MChangeMap(3Map), MRemoveProduct(3Map),
MRemoveProducts(3Map), MuReference(3Mu)

106

MAddTimeOut

FUNCTION
Register atimeout with the service mananger.

SYNTAX
#include <M/Service.h>

MapTimerld MAddTimeOut(proc, data, delay) MTimerCallbackProc proc;
Pointer data;
int delay;

ARGUMENTS
proc Specifies the procedure that is to be called when
time expires.

data Specifies the argument that isto be passed to the
specified procedure when the callback is called.

delay Specifies the time interval in milliseconds.

DESCRIPTION
The MAddTimeOut() routine registers with the Service manager an interval timer and
returns an identifier for it. The callback procedure, proc is called when the timer elapses,
and then the timeout isremoved. The returned id can be used to remove the time out
before the timer has elapsed, with the call, MRemoveTimeOut.

RETURN

Thisfunction returns aMapTimerld. The value will be -1 if the call fails.
STRUCTURES

C Interface

typedef int MapTimerld;
typedef void * M TimerCallbackProc();

The MapTimerld is an integer identification of this timeout request. It can be used to
remove atimeout using the MRemoveTimeout call. The MTimerCallbackProc describes
the name of a procedure to call periodically.

SEE ALSO
MRemoveTimeOut(3Map)

107

MAddVolume

FUNCTION
Add a new volume to the Map Search Path.

SYNTAX
C Interface
void MAddV olume(channel, volume)
Channel channel;
char *volume;
ARGUMENTS
channel Specifies the connection to Chart returned by
M OpenChannel.
volume The volume to be added to the map search path.
DESCRIPTION

The MAddV olume function adds a new volume to the Map Search Path. All map data
files contained in this volume will be available for display in the server. If the environment
variable MapNoRecursion is set, then only the data files contained in the directory are
examined, otherwise all of the subdirectories (if any) are also examined.

When avolume is added, the filesin that directory are checked to see if they contain valid
map headers. If afile does, then a Draw Module is identified which is then responsible for
drawing the map. If no Draw Module is found which is capable of drawing this map, then
the description is stored, pending any future Draw Modules which attach to Chart.

ENVIRONMENT
MapNoRecursion
When this environment variable is set, only the specified path is checked for map
files. Otherwise the specified path and all of its subdirectories are checked.

ERRORS
BadChannel
An invalid channel id was used.

BadVolume
The specified volume isinvalid.

SEE ALSO
MReloadSearchPath(3Map), MRemoveV olume(3Map), MApplyAttributes(3C)

108

MApplyAttributes

FUNCTION
Set the attributes of an object and its children.
SYNTAX
C Interface
void MApplyAttributes(channel, object, &tts,
value mask)
Channel channdl;
Objectld object;
ObjectAttributes *atts;
MapVaueMask value mask;
ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

object The object whose attributes will be changed.

atts The object attributes to be applied to the object.

value mask

A value mask representing the attributes to be modified.

DESCRIPTION
MA pplyAttributes sets the attributes of an object and its children (if any) to the attributes
specified. If the Object isa Drawable, its attributes will be updated and the changes will
be visible on the screen (assuming the drawable is currently visible). Since adrawable
cannot have any children, this call would have the same effect as M SetAttri- butes(). If
the Object is a Class, the attributes of the class as well as the members of the Class are set
to the specified attributes. If the object isaList, all of the objectsin the List will be
updated. Finally, if the object isa Template, the attributes of the template will be updated,
and no changes will be seen on the screen. This would have the same effect as
M SetAttributes(), since a Template cannot have children.

The values for the ObjectAttributes fields are taken from
the parameter attsif the corresponding bit in the
value mask is set. Otherwise, the value is left unchanged.

ERRORS
BadChannd

109

An invalid channel id was used.

BadObjectld
An invalid object id was used.

BadValueError
Aninvalid field value was specified in the ObjectAt- tributes structure.

SEE ALSO
MApplyColor(3C), MApplyData(3C), MApplyFillType(3C), MApplyFont(3C),
MA pplyPickability(3C), MApplyVishility(3C), MObjAtts(3C), MObjMask(3C),
M SetAttributes(3C)

110

MApplyColor

FUNCTION
Change the color of an object and its children.

SYNTAX
C Interface
void MApplyColor(channel, object, color)
Channel channdl;
Objectld object;
char *color;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
from MOpenChannel.

object Theid of the object whose color isto be set.

color The new color for the object.

DESCRIPTION
MApplyColor sets the color of an object and all of its children to a named color from the
RGB Database. Behaviorally, this call works in a manner similar to MApplyAttributes().
The color must exist in the X Windows RGB Database. If it does not, the color is not
changed, and an error message is generated.

ERRORS
BadChannel
Aninvalid channel id was used.
BadObjectld
An invalid object id was used.
BadValueError
Aninvalid color was specified.
ColorTableFull
The specified color cannot be realized because the color table is full.
SEE ALSO

MApplyAttributes(3C), MSetColor(3C)

111

MApplyData

FUNCTION
Set the client_data field of an object and its children.
SYNTAX
C Interface
void MApplyData(channel, object, client data)
Channel channdl;
Objectld object;
char *client data;
ARGUMENTS
channel The connection to Cartographer; returned from
M OpenChannel.
object Theid of the object whose data attribute isto be
Set.
client data
The value to store in the client_data field.
DESCRIPTION

MApplyData sets the data field of an object and all of its children to the specified value.
Behavioraly this call worksin a similar manner to MApplyAttributes(). The client_data
field can be any 32 bit dataitem. Thisitemis returned back to the user whenit is
requested through M QueryObject, or by an ObjectSelectEvent.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid object id was used.

SEE ALSO
MApplyAttributes(3C) M SetData(3C)

112

MApplyFillOffset

FUNCTION
Set the pixel offset of an object and its children.
SYNTAX
C Interface
void MApplyFillOffset(channel, object, fill offset) Channel channel;
Objectld object;
int fill offset;
ARGUMENTS
channel The connection to Cartographer; returned from
M OpenChannel.
object Theid of the object whose fill offset isto be
Set.
fill offset
The new pixel fill offset for the object.
DESCRIPTION

MApplyFillOffset sets the fill offset of an object and all of its children. Behavioraly, this
call worksin amanner similar to MApplyAttributes(). Thisvalue provides a starting pixel
offset for objects using FillTransparent fill type. Refer to MObjAtts(3C) for more
information on this field.

ERRORS
BadChannel
Aninvalid channel id was used.
BadObjectld
Aninvalid object id was used.
BadVaueError
Aninvalid fill offset was specified.
SEE ALSO

MApplyAttributes(3C), MObjAtts(3C), M SetFillOffset(3C)

113

MApplyFillType

FUNCTION
Set the fill type of an object and its children.

SYNTAX
C Interface
void MApplyFill Type(channel, object, fill type) Channel channel;
Objectld object;
MapFillType fill type;
ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

object Theid of the object whose fill type isto be set.
fill type The new fill type of the object.

DESCRIPTION
MApplyFill Type sets the fill type of an object and all of its children. Behavioraly, this call
works in amanner similar to MApplyAttributes(). Valid values for fill type are:
FillEmpty, FillOpague, FillTransparent, FillDotted, FillHorizontal Stripes,
FillVerticalStripes, FillNega- tiveSlants, FillPositiveSlants, and FillCrossHatch. If the fill
type is FillOpague, then the object is filled completely with the color of the object. If the
fill type is FlIEmpty, then only the border of the object isdrawn. If thefill typeis
Fill Transparent, then the object isfilled with a pattern that alows the user to see the map
through the object. The pattern which is drawn is a function of the fill weight and fill
offset fields. Refer to MODbjAtts(3C) for more information on this field.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid object id was used.

BadValueError
An invalid fill type was specified.

SEE ALSO
MApplyAttributes(3C), MObjAtts(3C), M SetFill Type(3C)

114

MApplyFillWeight

FUNCTION
Set the fill weight of an object and its children.
SYNTAX
C Interface
void MApplyFillWeight(channel, object, fill weight) Channel channel;
Objectld object;
int fill weight;
ARGUMENTS
channel The connection to Cartographer; returned from
M OpenChannel.
object Theid of the object whose fill weight isto be
Set.
fill weight
The new fill weight of the object.
DESCRIPTION

MApplyFillWeight sets the fill weight of an object and all of its children. Behavioraly,
this call worksin a manner similar to MApplyAttributes(). The fill weight attribute has no
effect on the object unless thefill type is set to Fill Transparent. Refer to MObjAtts(3C)
for more information on how this works.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid object id was used.

BadValueError
An invalid fill weight was specified.

SEE ALSO
MApplyAttributes(3C), MObjAtts(3C), M SetFillWeight(3C)

115

MApplyFont

FUNCTION
Set the font of an object and its children.

SYNTAX
C Interface
void MApplyFont(channel, object, font)
Channel channdl;
Objectld object;
char *font;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
from MOpenChannel.

object Theid of the object whose font isto be set.
font The new name of the font for the object.

DESCRIPTION
MApplyFont sets the font of the object and all of its children to the named font.
Behaviorally, this call worksin a similar manner to MApplyAttributes(). If the font name
is not valid, the font remains unchanged, and an error message isissued. |If the object is
not of type Text, Symbol, or Char, thereisno real change as these are the only three
object typesthat use the font parameter. All font names must be valid X Window font
names.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
Aninvalid object id was used.

BadValueError
Aninvalid font name was specified.

SEE ALSO
MApplyAttributes(3C), M SetFont(3C)

116

MApplyHiLite

FUNCTION
Highlight/Unhighlight an object in a window.
SYNTAX
C Interface
void MApplyHiLite (channel, object, hilite)
Channel channdl;
Objectld object;
Boolean hilite;
ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

object Specifies the object to be highlighted.

hilite Specifiesthe highlight state. When set to True,
then the object will be highlighted; when set to False, the object will be
unhighlighted.

DESCRIPTION
The MApplyHiL ite causes the object and all of its children to be displayed in the current
highlight color. If object is of type Drawable or Template, then this cal is the same as
MSetHiLite. If object is of type List, then this call will change the highlight state for the
list and al of its children. If object is of type Class, then the highlight states of the Class
and all of its members are modified. The color of highlighted objects can be changed with
the routine M SetHiL iteColor.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid object id was used.

SEE ALSO

MApplyAttributes(3C), MObjAtts(3C), M SetHiLite(3C),
M SetHiLiteColor(3C)

117

MApplyLineStyle

FUNCTION
Set the line style of an object and its children.

SYNTAX
C Interface
void MApplyLineStyle(channel, object, line style) Channel channel;
Objectld object;
MapLineStyle line style;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
from MOpenChannel.
object The object whose line style attribute isto be
changed.
line style
The new line style for the object.
DESCRIPTION

MapApplyLineStyle sets the style of the line. The line style determines whether the line is
solid, dashed, or double dashed. Behavioraly, this call worksin a manner similar to
MApplyAttributes(). Valid line styles are MapLineSo- lid, MapL ineDashed, and

MapL ineDoubleDashed.

ERRORS
BadChannel
An invalid channel id was used.
BadObjectld
An invalid object id was used.
BadVaueError
Aninvalid line style was specified.
SEE ALSO

MApplyAttributes(3C), M SetLineStyle(3C)

118

MApplyLineType

FUNCTION
Set the line type of an object and its children.

SYNTAX
C Interface
void MApplyLineType(channel, object, line type) Channel channel;
Objectld object;
MapLineType linetype;
ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

object The object whose line type attribute isto be
changed.

line type The new line type for the object.

DESCRIPTION
MApplyL ineType sets the line type of an object and al of its children. Behaviorally, this
command works in a similar manner to MApplyAttributes(). The line type determines
how aline will be drawn on the earth. Geodesic, GreatCircle, and RhumbL ine are valid
linetypes. If theline typeis Geodesic, the default value, aline is drawn between the two
points after they are projected, the exact path that the line crosses will vary depending on
the projection. If the line type is GreatCircle, aline is drawn between the two points
following a great circle; thiswill be the shortest path between the two points. In the last
case, RhumbL ine, the two points are connected with aline of constant bearing. Inthe
latter two cases (GreatCircle and RhumblL.ine), the lines may not be straight, depending on
the projection.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid object id was used.

BadValueError
An invalid line type attribute was used.

119

SEE ALSO
MApplyAttributes(3C), M SetLineType(3C),

120

MApplyLineWidth

FUNCTION
Set the line_width of an object and its children.

SYNTAX
C Interface
void MApplyLineWidth(channel, object, line width) Channel channel;
Objectld object;
int line width;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
from MOpenChannel.
object The object whose line width attribute is to be
changed.
line width
The new line width for the object.
DESCRIPTION

MApplyL ineWidth sets the line width of an object and all of its children. Behavioraly,
this command functions in a manner similar to MApplyAttributes().

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid object id was used.

BadValueError
Aninvalid line width was specified.

SEE ALSO
MApplyAttributes(3C), M SetLineWidth(3C)

121

MApplyPickability

FUNCTION
Set the pickability of an object and its children.
SYNTAX
C Interface
void MApplyPickability(channel, object, pickability) Channel channel;
Objectld object;
Boolean pickahility;
ARGUMENTS
channel The connection to Cartographer; returned from
M OpenChannel.
object Theid of the object whose pickability attribute
isto be set.
pickability
The new pickability of the object.
DESCRIPTION

MApplyPickahility sets the pickability of an object, and all of its children. If object isa
List, then the pickability of the List and all of its child objects are set. If object is a Class,
then all of the class members have their pickability modified. If object isa Template or a
Drawable, then this call isidentical to M SetPickability. Valid values for the pickability
parameter are Pickable (True) and NotPickable (False).

The pickability determines whether or not an object is selectable on the window. Inthe
simplest case (an object that is not a member of alist), if the object is selected and its
pickability is set to either Pickable or ParentPick- able, then an ObjectSelectEvent is sent
to the Client that owns the object. If the object is NotPickable, then no event is sent.

If an object isamember of alist, and is Pickable an ObjectSelectEvent is sent to the

Client, just asif it werenot in alist. If the object is not pickable, then no event is sent. If
the object's pickability is set to ParentPick- able then the pickability of the object's parent is
checked. If thisis pickable, then an ObjectSelectEvent is sent with the id of the list (not
the id of the object actually

selected). If thelist is NotPickable, then no event is sent, and if the list is ParentPickable,
then this process continues until an object is found that is not pickable, or the top of the
object treeisreached. If thetop list in the object tree is ParentPickable, then an event is
sent to the Client just asif this object were set to Pickable.

122

ERRORS
BadChannel
An invalid channel id was used.

BadObjectid
Aninvalid object id was used.
BadValue
Aninvalid value for pickability was specified.
SEE ALSO

MApplyAttributes(3C), M SetPickability(3C)

123

MApplyPixel

FUNCTION
Change the color of an object using the pixel value.
SYNTAX
C Interface
void MApplyPixel(channel, object, pixel)
Channel channdl;
Objectld object;
unsigned long pixel;
ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

object Theid of the object whose color isto be changed.
pixel The pixel value of the color for the object.

DESCRIPTION
MApplyPixel setsthe color of asingle object to the specified pixel value. Behaviorally,
this call worksin asimilar manner to MApplyAttributes(). The pixel value must be avalid
pixel value for the display, and should be aread-only allocated color.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid object id was used.

BadValueError
An invalid pixel value was specified.

SEE ALSO
MApplyColor(3C), MObjAtts(3C), M SetAttributes(3C),

124

MApplyTemplate

FUNCTION
Copy atemplate into an object and all of its children.
SYNTAX
C Interface
void MApplyTemplate(channel, object, template,
value mask);
Channel channel;
Objectld object;
Objectld template;
MapVaueMask value mask;
ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

object The object whose attributes are to be changed.
template The template to be applied.

value mask
A value mask representing the attributes to be applied.

DESCRIPTION
MApplyTemplate applies the object attributes specified by template to the object or group
of objects represented by object. Only the attributes whose bit is set in the value_mask
will be set in the objects. The effect of this call is nearly identical to MApplyAttributes,
with the exception that MApplyAttributes takes its attributes from an ObjectAttributes
structure, whereas MApplyTemplate copies the attributes from an existing template.

ERRORS
BadChannel
An invalid channel id was used.
BadObjectld
Aninvalid object id or template ID was used.
SEE ALSO

MApplyAttributes(3C), M SetTemplate(3C) MObjAtts(3C)

125

MApplyVisibility

FUNCTION
Set the visibility of an object and its children.
SYNTAX
C Interface
void MApplyVisibility(channel, object, visibility) Channel channel;
Objectld object;
Boolean vighility;
ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

object The object whose visibility is to be changed.

visibility
The new visihility state for the object.

DESCRIPTION
MapApplyVisbility sets the visibility of an object and all of its children. Valid values for
visibility are Visible (True) and Hidden (False). If an object's visibility is set to Hidden,
then the object is not visible on the map. If the object isnot aList or a Class, thisroutine
is the same as M SetVisihility.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid object id was used.

BadValueError
An invalid vishility state was specified.

SEE ALSO
MApplyAttributes(3C), M SetVisibility(3C), MObjAtts(3C)

126

MChangeMap

FUNCTION
Change the maps and features displayed in a map window.
SYNTAX
C Interface
void MChangeMap(channel, window, atts, value mask) Channel channel;
Windowld window;
MapChangeAttributes * atts;
MapVaueMask value mask;
ARGUMENTS
channel The connection to the Chart Manager; returned from
M OpenChannel.
window The window whose map isto be changed.
ats The structure from which the values (as specified
by the value mask) are to be taken. The value mask should have the
appropriate bits set to indicate which attributes have been set in the struc-
ture.
value mask

Which attributes of the map are to be changed. The mask is the bitwise
inclusive OR of the valid attribute mask bits. If value mask is zero

(CM SetNone), the attributes are ignored, and the value of that field for the
currently displayed map is used instead. Valid values for value mask
include:

CMSetBoundary: The map boundaries are changed according to the value
of MapBoundaryAttri- butes.

CM SetProjection: The map's projection is changed to the value specified in
the ProjectionType.

CMSetProduct: A new map display is drawn according to the list of
MapProductAttributes.

CMAddProduct: The current map display is updated with the given list of
MapProductAttributes. The requested set is overlayed onto the
existing map if they do not already exist.

127

Note 1: if neither CM SetProduct nor CMAddProduct is set, then
the draw request derives the list of maps to be drawn based upon
the existing set of map products.

Note 2: CMAddProduct is mutually exclusive with CM SetProduct.

CMSetColors: The map's color and/or intensity is changed according to the
list of provided MapColorAttributes.

CM SetFeature: The map's feature overlays are drawn according to the list
of provided Map- FeatureAttributes.

CMAddFeature: The indicated set of featuresis added to the current set of
displayed features.

Note 1: if neither CM SetFeature nor CMAddFeature is set, then
the draw request derives the list of features to be drawn based upon
the last specified list of Map- FeatureAttributes, from a

M ChangeMap() which had the CM SetFeature or CMAddFeature
set, or else by way of an MAddFeature(3Map) or
MAddFeatures(3Map) call.

Note 2: CMAddFeature is mutually exclusive with CM SetFeature.

CMSetAll: Changes all attributes of the map to the new values specified in
the MapChangeAttri- butes structure.

DESCRIPTION
The MChangeMap function changes the map display in the specified window. This
function forces the window to be changed to the attributes that are set in MapChangeAttri
butes.

The Chart Manager receives this request and formulates one or more draw requeststo be
processed by Draw Modules. Periodic updates, in the form of events, are provided for
Clientsinterested in the progress of a change map request.

Error processing for a change map request can take on two forms: synchronous and
asynchronous. Synchronous errors are fed back immediately to the Client making the
change map request. An example of such an error is BadValueError, which occurs when
one of the specified fieldsisillegal. Asynchronous errors occur at some time after the
Client returns from the MChangeMap call. These errors occur as the result of some
problem encountered by the Chart Manager, or one of the Draw Modules, while the
request is being serviced. These errors are also fed back to the Client making the request
viaitserror handler.

Errors which occur while a change map request isin progress can be either fatal or non-

128

fatal. Fatal errorsresult in the map request being canceled, and an AbortMapNotify being
sent to all interested Clients. The most common case where this occurs is when all of the
map products being requested are denied, resulting in no map products being drawn.
Nonfatal errors which occur include the inability to draw one particular map product.
These errors are fed back to the error handler of the Client making the request. Some of
these errors have associated data. See the ERRORS section below, aswell as
MError(3C) for more detail.

In the case where the request being made is internally generated, say, for example, a zoom
box request, the errors are then fed back to the process which owns the window (eg, the
Chart Client which created the window).

STRUCTURES
C Interface

typedef struct {
int num_products;
MapProductAttributes product MAX_MAPS]; ProjectionType
projection; MapBoundaryAttributes boundary;

int num_colors;

MapColorAttributes colorfMAX_COLOR_MODELS]; int
num_features; MapFeatureAttributes * features;

} MapChangeAttributes;

The fields for the MapChangeAttributes structure are
described below:

products
A list of map product specifications. This structure is described in detail under
MProdAtts(3Map). These values are used only if the CM SetProduct bit is set in
value mask.

num_products
The number of products specified in the products list. This value cannot exceed the
Chart Manager constant MAX MAPS.

projection
A projection to be displayed. The MProjection(3Map) man page discusses display
projectionsin detail. Thisvaueis used only if the CM SetProjection bit is set in
value mask.

Note: not all map products can be displayed in all projections; hence some
projections may not be able to smulataneoudly display two different map products.
The value AnyProjection allows the Chart Manager to determine the projection
most common to all of the map products.

129

color
A list of color specifications for the map display. The M Color(3Map) man page
discusses color modelsin detail. This specification is used only if the CM SetColor
bit is set in value mask.

num_colors
The number of color specificationsin the color list. This value cannot exceed the
Chart Manager constant MAX COLOR MODELS.

boundary
The boundaries of the map to be displayed. The MBoundary(3Map) man page
discusses map display boundariesin detail. This specification is used only if the
CM SetBoundary bit is set in value mask.

features
A list of features to be displayed. The MFeatAtts(3Map) man page discusses map
featuresin detail. This specification is used only if the CM Set- Features bit is set in
value mask.

num_features
The number of feature attributes in the feature list. There is no built in limit to the
number of features which can be specified in an M ChangeMap request.

The MError manual page provides more information on the
fields in the MapErrorCodel nformation structure

ERRORS
Note 1. Errorsreturned by an internal change map request are similar, except that they
are sent to the owner of the window.

Note 2: Whereindicated, some of the errors below return a MapErrorCodel nformation
structure. In the case of errors related to drawing features, the map type and sub type
fieldsin this structure are set to the interna constant AnyMap. The counterpart feature
fields are set to the feature which caused the error. Likewise, for errorsrelated to drawing
map products, the feature type and feature subtype fields are set to the internal constant
Any- Feature. The counterpart map fields are set to the map product which caused the
error. The MuReference(3Mu) calls can be used to obtain a string equivalent value for
any of the fields.

AlreadyDrawingMap
A map draw command is already in progress for the specified window. Thisisa
synchronous error in all cases.

BadChannel

130

Aninvalid channel id was used. Thisis a synchronous error in all cases.

BadMapEntry
An error occurred while drawing one of the map products. Thiserror isdueto
problems with the map data format, missing datafiles, or other related problems.
Thisis an asynchronous, non-fatal error. An associated
MapErrorCodel nformation structure is returned with this error which gives
specific information on the particular map product generating this error.
BadServer

The Draw Module responsible for drawing the map product has terminated. This
is usually an asynchronous error. The MapErrorCodel nformation structure
indicates the product generating the error.

BadwWindowld
Aninvalid window id was used. Thisis a synchronous error in all cases.

BadValueError
An invalid value was specified in one or more of the MapChangeAttributes fields.
Thisisasynchronous error in all cases.

ErrorDrawingMap
An error occurred on a specific draw request. Thisis an asynchronous, non-fata
error. An associated MapEr- rorCodel nformation structure is returned with this
error which gives specific information on the particular map product generating
thiserror.

ErrorDrawingFeature
An error occurred while a feature draw was in progress. Thisis an asynchronous,
non-fatal error. An associated MapErrorCodel nformation structure is returned
with this error which gives specific information on the particular map feature
generating this error.

FeatureNotAvailable
Specified feature is not available. Thisis a synchronous, non-fatal error, which
returns the feature generating the error in a MapErrorCodel nformation structure.

FeatureNotSupported
A specified feature is not supported on the given set of map products. This can
occur dueto restrictionsinside a Draw Module for supporting the given feature
under the current set of Draw Modules, display projection, earth model, and
coverage. Thisisasynchronous, non-fatal error, which returns the map feature
generating the error in a MapErrorCodel nformation structure.

HardwareNotSupported

131

A specified map could not be rendered because the underlying hardware does not

support TrueColor. Thisis asynchronous, non-fatal error, which returns the map

product generating the error in aMapErrorCodel - formation structure.
MapDrawAborted

The specified draw request was aborted at the request of some Chart Client. This
is an asynchronous nonfatal error. The MapErrorCodel nformation structure is
returned along with the error, and indicates the product generating the error.

MapTooSmall
The specified boundary results in an image which istoo small to draw. Thisisa
synchronous, non-fatal error. The MapErrorCodel nformation structure is returned
along with the error, and indicates the product generating the error.

MaxExtents
The specified coverage inside the request exceeds some boundary extent in the
given projection. The view is automatically recentered so that the extents are not
exceeded. Thisisanon-fata error. A MapErrorCodel n- formation structure is
returned along with the error, and indicates the projection generating the error.

MaxScale
The specified map scale exceeds the maximum scale supported. This error can
occur under two conditions. 1n one case, the error refersto a scale factor which is
projection dependent. In this case, the view is automatically set to the maximum
scale. Inthe second case, the error refersto a specific map or feature product,
which cannot be drawn because the view is zoomed out too far. Inthiscase, a
MapErrorCodel nfor- mation structure is returned along with the error. Thisisa
non-fatal error in both cases.

MinScale
The specified map scale is smaller than the minimum scale supported. This error
can occur under two conditions. In one case, the error refersto the desired
coverage. Inthis case, the coverage is checked against an absolute factor common
to all projections. The view is automatically set to the minimum scale. The second
case occurs when a given map or feature product cannot be drawn because the
scale istoo small (eg. the view is zoomed too far in) for the map to be seen. The
MapErrorCodel nformation structure is returned along with the error in this case.
Thisisanon-fatal error in both cases.

NoMapsDrawn
The change map request resulted in no map products being drawable. Thisisa
fatal error, which can be either synchronous or asynchronous. In either case, other
non-fatal errors may precede it.

NotEnoughColors

132

The chart graphics server is unable to alocate the colors necessary to draw the
indicated map. Thisisanon-fatal, asynchronous error. The MapErrorCodel nfor-
mation structure which is returned in this case describes the map product which
could not be drawn.

OutOfMemory
Unable to alocate memory to perform request. Thiserror can aso occur if the
image memory cannot be allocated for a particular product. Inthe latter case, an
associated MapErrorCodel nformation structure is also returned.

ProductNotFound
The specified product was not found at the given area of coverage. Thisisa
synchronous, non-fatal error, which returns a MapErrorCodel nformation structure
indicating the product generating the error.

ProjectionNotSupported
The specified projection cannot display the given map or feature product. Thisisa
synchronous, non-fatal error. The MapErrorCodel nformation structure indicates
the product and projection generating the error. If a MapErrorCodel nformation
structure is not included with this error, then the given projection is simply unsup-
ported by the Chart Manager.

SystemNotSupported
The calculated earth model cannot display the given map or feature product. This
is a synchronous, non-fatal error. The MapErrorCodel nformation structure
indicates the product generating the error.

TooManyMaps
The change map request would result in more than MAX_MAPS draw requests if
fully satisfied. Thisisanon-fatal, synchronous error. The net effect isto trim the
number of draw requests to a maximum of MAX_MAPS.

UnresponsiveDrawModule
A Draw Module is not responding to a pending request. Thisis an asynchronous,
non-fatal error. The MapEr- rorCodel nformation structure indicates the product
generating the error.

WorldFitProblem
A view of the entire world is not possible in the given projection for the given
pixmap and window extents. When drawing the whole world, the Chart Graphics
server

attemptsto fit aview of the world to ether the window width or the window
height boundary. The other boundary is extended as needed. If this extension
goes beyond the extents of the pixmap, then the world view is clipped in that
direction, and thiswarning isissued. Thisis a synchronous, non-fatal error. A

133

MapErrorCodel nformation structure is returned along with the error, and indicates
the projection generating the error.

SEE ALSO
MAddFeature(3Map), MAddFeatures(3Map), MAddProduct(3Map),
MAddProducts(3Map), MAttsMask(3Map), MBoundary(3Map), MColor(3Map),
MFeatAtts(3Map), MListMaps(3Map), MM odifyFeature(3Map),
MM odifyFeatures(3Map), MQueryMap(3Map), MProdAtts(3Map), MProjection(3Map),
MRecenterMap(3C), MRemoveFeature(3Map), MRemoveFeatures(3Map),
MRemoveProduct(3Map), MRemoveProducts(3Map), M SetMapColors(3C),
M SetMapColorsByRGB(3C), M Setlntensity(3Map), M SetMapBounds(3Map),
M SetMapWidth(3C), M ScaleM ap(3Map)

134

MChangeSymbol

FUNCTION
Modify the drawn symbol in a symbol object.

SYNTAX
C Interface
void M ChangeSymbol(channel, object, symbol)
Channel channdl;
Objectld object;
NTDSSymbol symbol;
ARGUMENTS
channel The connection to the Chart Manager; returned from

MOpenChannel.

object The object whose symbol is to be changed.
symbol The new symbol to be drawn.

DESCRIPTION
M ChangeSymbol changes the NTDS symbol displayed in a symbol object, without the
overhead of destroying and creating the object. Using this command on non-symbol
objects will cause a BadVaueError.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid object id was used.

BadValueError
The object is not a Symbol object.

SEE ALSO
MDrawSymbol(3Map), M SetObjData(3Map), M Set SymbSz(3M ap)

FUTURE EXPANSIONS
The M ChangeSymbol command is a simplified interface to the M SetObjectData()
function.

135

MChangeText

FUNCTION
Modify the text field in atext object.

SYNTAX
C Interface
void MChangeText(channel, object, text, ntext) Channel channel;
Objectld object;
char *text;
int ntext;
ARGUMENTS
channel The connection to Cartographer; returned from
M OpenChannel.
object The object wholse text field is to be changed.
text The new text string for the object.
ntext The number of charactersin the text string.
DESCRIPTION

M ChangeText changes the text display in a Text object, without the overhead of
destroying and creating the object. Using this command on objects whose type is not Text
(including AngleText) will cause a BadV aueError.

ERRORS
BadChannel
An invalid channel id was used.
BadObjectid
An invalid object id was used.
BadValueError
The object is not a Text object.
SEE ALSO

MDrawText(3C), M SetObjectData(3C)

FUTURE EXPANSIONS
The MChangeText command is provided for compatability with earlier systems, and
provides a simplified interface to the M SetObjectData() routine.

136

MChannelToSocket

FUNCTION
Return the socket id of the specified channel.

SYNTAX

C Interface

int MChannel ToSocket(channel)
Channel channel;

ARGUMENTS

channel The connection to Cartographer; returned from

M OpenChannel.

DESCRIPTION

The MChannel ToSocket function returns the socket id of the given channel, or (-1) if the
specified channel isinvalid. Thisfunction is useful if a Client application isto make a call
to select(2). Many graphics toolkits allow sockets to be added as input sources; with this
function you can get the socket id, and add it to eliminate the need to poll through the

M Pending(3C) call.

RETURN
The file descriptor for the socket isreturned. The value -1 isreturned in the case of an
error.

ERRORS
BadChannel
An invalid channel id was used.

SEE ALSO
MOpenChannel (3C), M CloseChannel(3C)

137

MCloseChannel

FUNCTION

Close a communication channel to Cartographer.
SYNTAX

C Interface

void MCloseChannel(channel)
Channel channel;

ARGUMENTS

channel The connection to Cartographer; returned by MOpen-

Channel.

DESCRIPTION

M CloseChannel closes the communication channel between the application program and
the Cartographer Manager specified by channel. All of the objects owned by the channel
are removed from the Map. If this channel isthe only owner of a window, the window
will be destroyed.

ERRORS
BadChannel
The channdl id was invalid.

SEE ALSO
MOpenChannel (3C)

138

MCopyTemplate

FUNCTION
Create a new template; take values from specified template.

SYNTAX
C Interface
Objectld MCopyTemplate(channel, template)
Channél channel;
Objectld template;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
by MOpenChannel.
template Specifiesthe ID of the template to be copied.
DESCRIPTION

M CopyTemplate creates a new template whose ObjectAttributes are a copy of the
attributes of template.

RETURNS
The Objectld value of the new template. The value Invali- dObjectld is returned if the call
fails.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
Aninvalid template id was used.

SEE ALSO
M CreateTemplate(3C)

139

FUNCTION

MCreateClass

Create an object class.

SYNTAX

C Interface

Objectld MCreateClass(channel, window, atts,

value mask, objects, nobjects)

ARGUMENTS
channel

window

Channel channdl;

Windowld window;
ObjectAttributes *atts;
MapVaueMask value mask;

Objectld *objects,
int nobjects;

Specifies the connection to Cartographer; returned
by MOpenChannel.

Specifies the window where the class of objects
applies.

Specifies a set of object attributes that applies
to the class of objects.

A bit mask which represents fields in the atts structure which should be
used.

A list of objects which are the initial members of
the class.

nobjects The number of objectsin the list.

DESCRIPTION

M CreateClass forms a Class of objects. An object can be a member of many Classes, and
a Class can be used to set attributes (such as visibility) on groups of objects through the
use of only one command. An object Class contains a list of objects and an associated
ObjectAttributes structure. The objects contained in the Class list are made up of Lists

and Drawables. The ObjectAttributes for the Class are initialized to atts. If attsis set to

NULL, or for

140

those values of atts where the corresponding bit field in value mask is not set, the value is
taken from the Defaul- tAttributes structure for that window.

RETURNS
The Object ID of the created object Class.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectid
An invalid object 1D (one which is neither a List or a Drawable) was specified in
the objects parameter.

Badwindowl!d
An invalid window id was used.

BadValueError
An invalid value has been specified in one of the ObjectAttributes fields.

SEE ALSO
MDestroyObject(3C) MAddObject(3C), MRemoveObject(3C)

141

MCreatelList

FUNCTION
Create alist in awindow.

SYNTAX
C Interface
Objectld MCreatel ist(channel, window, objects, nob- jects)
Channel channel;
Windowld window;
Objectld *objects,
int nobjects;
ARGUMENTS
channel The connection to Cartographer; returned from
M OpenChannel.
window The window to creat the list in.
objects The objectsin the list.
nobjects The number of objectsin the list.
DESCRIPTION

The MCreatel ist function creates alist that will contain the objects passed. The number
of ids may be 0, and the pointer to the array NULL. Thiswill create alist with no
children. Objects contained within the List must be Drawables or Lists of other objects.
The object id of the newly created list isreturned. If the list can not be created,
InvalidObjectid is returned.

RETURNS
The Objectld value of created object list. The value
InvalidObjectid is returned if the call fails.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
Aninvalid object id was specified in the list.

Badwindowl!d
An invalid window id was used.

SEE ALSO
M DestroyList(3C), MAddObject(3C), MRemoveObject(3C)

142

MCreateObiject

FUNCTION
Create an object through animation.
SYNTAX
C Interface
Objectld M CreateObject(channel, template, object type) Channel channel;
Objectld template;
ObjectType object type;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
from MOpenChannel.
template Specifies the ObjectAttributes used when the
object is created.
object type
Specifies the type of Drawable object to be created.
DESCRIPTION

The M CreateObject function will create an object of the specified type using animation.

Valid objects which can be created via animation include:

Arc
This function requires three points. a center point and the two endpoints of the arc.
Box
This function requires two points. a center point and a point on the box.
Circle
This function requires two points. a center point and a point on the circle.
Ellipse
This function requires three points. a center, a point to specify the mgor axis, and
apoint to specify the minor axis.
Line
This function requires two points to specify the line's
endpoints.
Polygon

This function requires N points for an N sided polygon. Animation extends from

143

the previous line segment and the polygon is created only after the finish key or
third button on the input device is pressed. The MCreatePoly call allows Clients to
place restrictions on the maximum number of pointsin the created object.

Polyline
This function requires N points for an N segment polyline. Animation extends
from the previous line segment and the polyline is created only after the finish key
or third button on the input device is pressed. The MCreatePoly call allows
Clients to place restrictions on the maximum number of pointsin the object.

The create object call makes use of animate keys. The animate keys are defined by the
latest M SetAnimateKeys call.

If the escape key is pressed anytime during the animate process, then the animation is
aborted, and no object is created. If the select key is pressed during the animate process,
thisis equivalent to selecting a point. If the finish key is pressed and there are insufficient
points to create an object definition, then this key isignored. If enough points have been
entered to complete an object's definition, then animation mode stops and the object is
created. If the right input device button is pressed, thisis equivalent to the finish key
being pressed.

If an animation is aready in effect, then a BadOwner error occurs.

Upon successful creation of an object, an ObjectChangedEvent is sent to the application
which requested the creation. Also, the application which requested the creation is
registered as the object's owner.

RETURNS
The Objectld value of created object. The value InvalidOb- jectld is returned if the call
fails. Note that the returned value is not an active object until a ObjectChanged event
occurs for this object.

ERRORS
BadChannel
An invalid channel id was used.

Badwindowl!d
An invalid window id was used.

BadObjectld
An invalid template id was used.

BadOwner
An animation is already in effect.

BadValueError
Aninvalid object type was specified.

144

SEE ALSO
MADbortAnimation(3C), MCreatePoly(3C), MCreateT ext(3C), MEvents(3C),
MODbjAtts(3C), M SetAnimateKeys(3C)

145

MCreatePoly

FUNCTION
Create a polygon or polyline object through animation.

SYNTAX
C Interface
Objectld MCreatePoly(channel, template, object type, max points)
Channel channdl;
Objectld template;
ObjectSubType object type;
int max points,
ARGUMENTS
channel Specifies the connection to Cartographer; returned
from MOpenChannel.
template Specifies the ObjectAttributes used when the
object is created.
object type
Specifies the type of drawable to be created, only Polygon or Polyline
should be specified here. For other object types, use the conventional
M CresteObject(3C) call.
max points
Specifies the number of points for a polygon or polyline.
DESCRIPTION

The MCreatePoly call creates a polygon or polyline object using animation. It differs from
M CreateObject only because of an additional parameter, max points, which allows a Client
to restrict the maximum number of points which an object can have. For more
information, see M CreateObject.

RETURNS
The Objectld value of created object. The value InvalidOb- jectld is returned if the call
fails. Note that the returned value is not an active object until a ObjectChanged event
occurs for this object.

ERRORS
BadChannd

146

An invalid channel id was used.

Badwindowl!d
An invalid window id was used.

BadObjectld
An invalid template id was used.

BadOwner
An animation is already in effect.

BadValueError
An invalid object type was specified. This can aso occur if abogus max points
value is specified.

SEE ALSO
MADbortAnimation(3C), MCreateObject(3C), MEvents(3C), MObjAtts(3C),
M SetAnimateK eys(3C)

147

MCreateTemplate

FUNCTION
Create atemplate.

SYNTAX
C Interface
Objectld MCreateTemplate(channel, window, atts, value mask)
Channel channdl;
Windowld window;
ObjectAttributes *atts;
MapVaueMask value mask;

ARGUMENTS
channel

Specifies the connection to Cartographer; return by MOpenChannel.

window
Specifies the window on which to create the template.

atts Specifies the object attributes to be assigned to thistemplate. A value of NULL will
create atemplate with all attribute values set to their default values.

value mask
Specifies a mask of object attributes used for setting the template's initial values.
Object attributes which are not set take on their default values. Object masks are
defined in MObjMask(3C).

DESCRIPTION
M CreateT emplate creates an ObjectAttributes template in the server. The values for the
various fields are taken from the parameter atts if the corresponding bit in the
value mask is set. Otherwise, the default value is used;
see MODbjAtts(3C) for adiscussion of each attribute field and its default value. If atsis
set to NULL, then atemplate with default attributes is created.

RETURNS

The Objectld value of the created template. The value
InvalidObjectid is returned if the call fails.

ERRORS
BadChannd

148

An invalid channel id was used.

Badwindowl!d
An invalid window id was used.

BadV alueError
Aninvalid value in one or more fields of the ObjectAt- tributes structure occurred.

SEE ALSO
MApplyTemplate(3C), MCopyTemplate(3C), MObjAtts(3C),
MObjMask(3C), MSetTemplate(3C)

149

MCreateText

FUNCTION
Place text on the screen through animation.

SYNTAX
C Interface
Objectld MCreateText(channel, template, text, ntext) Channel channel;
Objectld template;
char *text;
int ntext;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
from MOpenChannel.
template Specifies the ObjectAttributes used for drawing
the text.
text Thetext string to be placed on the Map.

ntext The number of charactersin the string to be
displayed.

DESCRIPTION
The MCreateText function allows the user to place text interactively on the map. Once
the call is made, the text will appear on the screen, and the user can move it around with
the cursor. When the left mouse button is pressed, alocation for the text is selected, and a
line is drawn from the location of the text to the current cursor location. The line can then
be moved around to give it an offset from the location specified.

The MCreateText call makes use of animate keys. The animate keys are defined by the
latest M SetAnimateKeys call.

If the escape key is pressed anytime during the animate process, then the animation is
aborted, and no text is created. If the select key is pressed during the animate process, this
is equivalent to selecting a point, and the text is created at the cursor location. The
function of the finish key is similar in this case.

Upon successful creation of atext object, an ObjectChangedEvent is sent to the
application which requested the creation. Also, the application which

requested the creation is registered as the object's owner. If an animation is already under

150

way, then a BadOwner error occurs.

RETURNS
The Objectld value of created object. The value InvalidOb- jectld is returned if the call
fails. Note that the returned value is not an active object until a ObjectChanged event
occurs for this object.

ERRORS
BadChannel
An invalid channel id was used.

Badwindowl!d
An invalid window id was used.

BadObjectld
An invalid template id was used.

BadOwner
An animation is already under way.

BadValueError
Aninvalid object type was specified.

SEE ALSO
MADbortAnimation(3C), MEvents(3C), MObjAtts(3C)

151

MCreateWindow

FUNCTION

Create a window in Chart showing world view.

SYNTAX

C Interface
Windowld MCreateWindow(channel, atts, atts mask, map, map mask)
Channel channdl;
WindowAttributes *atts;
MapVaueMask atts mask;

MapChangeAttributes *map; MapVaueMask map mask;

ARGUMENTS

channel The connection to Chart; returned by MOpenChannel.

atts Attributes that describe the window to be created.
See MWindowAtts(3C) for details about this structure.

atts mask For those attributes whose corresponding bit field is not set in atts mask, the
default value is used.

map Aninitial map to be drawn. If set to NULL, then
the default map will be drawn.

map mask A bit mask representing the attributes of the map to be modified.

DESCRIPTION

The M CreateWindow function creates a window with the specified attributes. A default
map showing a vector map product at world view is drawn if no map attributes are
specified. The window attributes structure contains alist of initial attributes for creating
the window. See MWindowAtts(3C) for details. The atts mask field is further defined in
MWinMask(3C). Default values for window attributes are also described in those
sections.

RETURNS

The Windowld of the created window. The value

| nvalidWindowld is returned if the call fails.

ERRORS

BadChannel
An invalid channel id was used.

152

BadDisplay
The window could not be created because the X Windows display specification
does not exist or isinaccessible.

BadValueError
An invalid value was specified in one or more of the attributes.

DuplicateWindow
The request to create this window was aborted because the named window already
exists.

TooManyWindows
The request to create this window was aborted because the system parameter for
the number of windows supported by Chart was exceeded.

BUGS
The pixmap width and pixmap height fields should never be smaller than the width and
height of the displayed window. Generally, Chart does not allow this to happen.
However, in the event that the map window is reparented to another window, Chart loses
control over the size of the map window. In the event that the specified pixmap width or
pixmap height is then smaller than the map window, unpredictable results can occur.

SEE ALSO
MDestroyWindow (3C), MEventMask (3C), MQueryWindow (3C), MMapWindow (3C),
MUnMapWindow (3C), MUseWindow (3C), MUseNamedWindow (3C), MWindowAtts
(3C), MWinMask (3C), XOpenDisplay (Xlib)

153

MDebug

FUNCTION
The Chart Manager Debugging Utilities.

SYNTAX
C Interface
void MAllocV erify():;

Severa debugging utilities are available for debugging application programs that use the
Chart Manager. C programmers who use MAlloc, MReAlloc, and M Free can compile
their programs with the -DDEBUG_MALLOC compile switch in order to verify that their
application is using proper memory management. When this switch is enabled, and a call
is made to MAlloc() or MReAlloc(), a print statement occurs indicating the filename
making the call, the line number of the call, and the resulting address of the allocated
space.

MAIllocVerify() can be called by your program at any time to retrieve current memory
alocation statistics. This call is machine dependent, and has varying levels of effectiveness
based on the machine which it is called from.

A number of other machine dependent debugging features are aso available, including a
memory allocation address value checker (eXT and Sun), and a memory allocation
exception handler (NeXT). Refer to the malloc(3) manual page for available capabilities
on your machine. If the M library is compiled with -DDEBUG_MALLOC, some of these
machine dependent capabilities are automatically enabled.

M SetFPDebugL evel() allows the caller to specify actions to take during floating point
exceptions. The effect of this call is machine dependent.

Available to both Ada and C programmers is a single step capability using the environment
variable MapSingleStep. If this variable is set, then the channel between the application
and the Chart Manager to which it is connected is flushed after every request. 1n addition,
the call does not return until AFTER the request has been actually serviced by the Chart
Manager. Normally, requests will be buffered and sent in agroup. |If an error occurs, it
may be signaled well after the call is actually made.

ENVIRONMENT
MapSingleStep
If set using setenv(1), then application's communication with the Chart Manager
enters a single step mode.

SYSTEM DEPENDENCIES
HP Series 300, 400, 700, 800,

154

MAIlocV erify()calls memorymap(3). Otherwise, no special handling is performed.

Sun 3, Sun 4, SparcStations, DTC-2
MAIllocVerify() calls malloc verify(3) to verify the memory heap, and prints a
message if something iswrong. It aso prints out a map of all allocated addresses
by calling mallocmap(3).Programs MAlloc() also get the benefits of malloc
debug(3), which is automatically set during the first call to MAlloc().

NOTES
None of the memory debugging capabilities are available unless both the toals library
(libtools.a) and your program have been compiled with "DEBUG_MALLOC" defined as a
C preprocessor variable. The option "-DDEBUG_MALLOC" works on the C compiler
command line. Better yet, use imake, with the configuration files located in
${LIBS}/config, and set the "DebugMalloc" variable in the site.def file to the value
"YES'.

SEE ALSO
MMemory(3Map),

155

MDestroyList

FUNCTION
Destroy an object and its children.

SYNTAX
C Interface
void MDestroyL ist(channel, object)
Channél channel;
Objectld object;
ARGUMENTS
channel The connection to Cartographer; returned by MOpen-

Channel.
object The ID of the object to be destroyed.

DESCRIPTION
MDestroyL ist destroys the object from the object data base of the specified window. |f
the object isalist, al of the children of the list are destroyed recursively. If the object is
not alist, thiscall isidentical to MDestroyOb- ject. If the object is visible within the Map
Window, it will first be removed from the screen, and then destroyed. Any further
references to this object 1D will result in a BadObjectld error.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
The specified object does not exist.

SEE ALSO
MCreateList(3C), MDestroyObject(3C)

156

MDestroyObject

FUNCTION
Destroy an object in Cartographer.

SYNTAX
C Interface
void M DestroyObject(channel, object)
Channel channel;
Objectld object;
ARGUMENTS
channel Specifies the connection to Cartographer; returned

by MOpenChannel.

object The ID of the object to be destroyed.

DESCRIPTION
MDestroyObject destroys the object from the object data base of the specified window. If
the object is visible within the Map Window, it will first be removed from the screen, and
then destroyed. If the object isaList or aClass, only the list or class will be destroyed, its
children will remain unchanged. Any further referencesto this object 1D will result ina
BadObjectid error.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
The object specified does not exist.

SEE ALSO
MDestroyList(3C)

157

MDestroyWindow

FUNCTION
Destroy awindow in Cartographer.

SYNTAX
C Interface
void MDestroyWindow(channel, window)
Channel channel;
Windowld window;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
by MOpenChannel.
window Specifies the window to be destroyed.
DESCRIPTION

MDestroyWindow destroys the window in the server. All data associated with the
window is freed within the server. Any further reference to window will result in a
BadWindowld error. If the window is currently mapped, it will be unmapped before it is
destroyed.

The window's owner is defined to be the Client which created the window. The window
is destroyed ONLY |F the specified Client is the window's owner. Otherwise, the window
connection is released, and the window is destroyed ONLY |F this Client isthe last
remaining connection to the window.

ERRORS
BadChannel
An invalid channel id was used.

BadWindowlId
The window id passed is not valid.

BadOwner
The specified Client is not connected to the indicated window.

SEE ALSO

M CreateM apWindow(3C), MMapWindow(3C), MUnMapWindow(3C),
MUseWindow(3C), MReleaseWindow(3C)

158

MDrawArc

FUNCTION
Draw an arc to awindow.

SYNTAX
C Interface
Objectld MDrawArc(channel, template, center, bearing, major axis, minor axis,
anglel, angle?)
Channel channel;
Objectld template;
MapPoint *center;
FLOAT bearing;
FLOAT major axis;
FLOAT minor axis,
FLOAT anglel,;
FLOAT anglez;
ARGUMENTS
channel The connection to Cartographer; returned from
M OpenChannel.

template A reference to ObjectAttributes used for drawing the arc.

center The center point of the arc, in decimal degrees.

bearing The bearing of the mgjor axis from true north in
degrees.
major axis

The mgjor axis of the arc, in nautical miles.

The minor axis of the arc, in nautical miles.
anglel The start of the arc in degrees from true north.
angle?2 The extent of the arc in degrees from true north.

DESCRIPTION
The MDrawArc function draws a circular or dliptical arc to the specified window. Each
arc is specified by a center

159

point and two angles. The arc will be drawn around this
center point with the given magjor and minor axes.

The template may be a Template, Class, or List object. In any case, the attributes from the
template object are copied into the attributes of the newly created object. If the template
isaList or aClass, the newly created object is added as a member.

RETURNS
The Objectld value of the created object. The value Invali- dObjectld is returned if the

call fails.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid template id was used.

BadValueError
Aninvalid value for one of the arc parameters was specified.

SEE ALSO
MObjAtts(3C), MDestroyObject(3C)

160

MDrawBitmap

FUNCTION
Draw a bitmap.
SYNTAX
C Interface
Objectld MDrawBitmap(channel, template, location, data, width, height, x hot, y
hot)
Channel channel;
Objectld template;
MapPoint *|location;
char *data;
int width;
int height;
int x hot;
int y hot;
ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

template Specifies the ObjectAttributes used for drawing
the bitmap.
location The location of the bitmap on the map.

Q.

data The bitmap data, in X bitmap format.
width The width of the bitmap in pixels.

height The height of the bitmap in pixels.

xhot The x origin of the bitmap in pixels.
yhot They origin of the bitmap in pixels.
DESCRIPTION

The MDrawBitmap function draws a bitmap in the specified window. The bitmap is
drawn at the location specified, and is centered around the point within the bitmap
specified by (x_hot, y_hot). The datamust be in X Bitmap format.

The template may be a Template, Class, or List object. In any case, the attributes from the
template object are copied into the attributes of the newly created object. If the template
isaList or aClass, the newly created object is added as a member.

161

RETURNS
The Objectld value of the created object. The value Invali- dObjectld is returned if the
cal fails.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid template id was used.

BadValueError
Aninvalid bitmap, location, or hot spot was specified.

SEE ALSO
M DestroyObject(3C), MObjAtt(3C)

162

MDrawBox

FUNCTION
Draw a box.
SYNTAX
C Interface
Objectld MDrawBox(channel, template, center, bearing, width, height)
Channel channel;
Objectld template;
MapPoint *center;
FLOAT bearing;
FLOAT width;
FLOAT height;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
from MOpenChannel.
template Specifies the ObjectAttributes used for drawing
the box.
center Specifies the center point of the box.
bearing Specifies the bearing of the box to be drawn.

width Specifies the width of the box in nautical miles.
height Specifiesthe height of the box in nautical miles.

DESCRIPTION
The MDrawBox function draws a box in the specified window. The box is centered about
the specified center point, with the appropriate width and height. This object differs from
arectangle in that it can be moved about the center point with the MM oveObject function.

The template may be a Template, Class, or List object. In any case, the attributes from the
template object are copied into the attributes of the newly created object. If the template
isaList or aClass, the newly created object is added as a member.

RETURNS
The Objectld value of the created object. The value Invali- dObjectld is returned if the
cal fails.

ERRORS
BadChannel
An invalid channel id was used.

163

BadObjectld
An invalid template id was used.

BadValueError
Aninvalid bearing, center, width, or height was specified.

SEE ALSO
MObjAtts(3C), MDestroyObject(3C)

164

MDrawChar

FUNCTION
Draw asingle character.

SYNTAX
C Interface
Objectld MDrawChar(channel, template, character, loca- tion, x offset, y offset)
Channel channel;
Objectld template;
int character;
MapPoint *location;
int x offset;
int y offset;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
from M OpenChannel.

template Specifies the ObjectAttributes used for drawing
the symbol.

character The character to be drawn.
location The center point of the character to be drawn.

x offset The x pixel offset from the location for the character.

y offset They pixel offset from the location for the character.

DESCRIPTION
The MDrawChar function draws a single character to the specified window using the font
and color specified by temr plate. The character is drawn offset from location, the offset is
specified by the parameters x offset, and
y offset. This command should NOT be used for drawing the NTDS symbol fonts defined
in Appendix A because those fonts are 16 bit fonts. The MDrawChar16 or
MDrawSymbol calls should be used instead.
The template may be a Template, Class, or List object. In

any case, the attributes from the template object are copied into the attributes of the newly
created object. If thetemplateisalist or aClass, the newly created object is added asa

165

member.

RETURNS
The Objectld value of the created object. The value Invali- dObjectld is returned if the
call fails.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
Aninvalid template id was used.”

BadValueError
Aninvalid location was specified.

SEE ALSO
MDestroyObject(3C), MDrawChar16(3C), MDrawSymbol(3C),
MObjAtts(3C), M SetOffset(3C)

166

MDrawChar16

FUNCTION
Draw asingle character.

SYNTAX
C Interface
Objectld MDrawChar16(channel, template, character, location, x offset, y offset)
Channel channel;
Objectld template;
short character;
MapPoint *|location;
int x offset;

int y offset;

ARGUMENTS
channel Specifies the connection to Cartographer; returned
from M OpenChannel.

template Specifies the ObjectAttributes used for drawing
the symbol.

character The character to be drawn.
location The center point of the character to be drawn.

x offset The x pixel offset from the location for the character.

y offset They pixel offset from the location for the character.

DESCRIPTION
The MDrawChar16 function draws a single 16 bit character in the specified window using
the font and color specified by template. The character isdrawn at location. Certain spe-
cial fonts, defined in appendix A, enable NTDS symbolsto be drawn in various sizes and
intengity. Integer constants are available for drawing these symbols. A symbol's font can
be changed dynamically by updating the ObjectAttributes font name field after creating the
symbol. Refer to the FONT INFORMATION section under the MDrawSymbol(3C)
manual page for more information.

The only difference between this and MDrawChear is that this routine provides access to
fonts with more than 256 symbols.

167

The template may be a Template, Class, or List object. In any case, the attributes from the
template object are copied into the attributes of the newly created object. If the template
isaList or aClass, the newly created object is added as a member.

RETURNS
The Objectld value of the created object. The value Invali- dObjectld is returned if the
cal fails.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
Aninvalid template id was used.”

BadValueError
Aninvalid location was specified.

SEE ALSO
MDestroyObject(3C), MDrawChar(3C), MDrawSymbol(3C),
MObjAtts(3C), M SetOffset(3C)

168

MDrawCircle

FUNCTION
Draw acircle.
SYNTAX
C Interface
Objectld MDrawCircle(channel, template, center, radius)
Channel channel;
Objectld template;
MapPoint *center;
FLOAT radius;
ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

template Specifies the ObjectAttributes used for drawing
the circle.

center Specifies the center point of the circle.
radius The radiusin Nautical Miles of the circle.

DESCRIPTION
MDrawCircle draws a circle in the specified window. It uses the following object
attributes to determine how the circle isto be passed: fill_style, line_style, color, and
line_width.

The template may be a Template, Class, or List object. I1n any case, the attributes from the
template object are copied into the attributes of the newly created object. If the template
isaList or aClass, the newly created object is added as a member.

RETURNS
The Objectld value of the created object. The value Invali- dObjectld is returned if the

call fails.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid template id was used.

169

BadValueError
Aninvalid center or radius was specified.

SEE ALSO
MObjAtts(3C), MDestroyObject(3C)

170

MDrawEllipse

FUNCTION
Draw an dllipse.

SYNTAX
C Interface

Objectld MDrawEllipse(channel, template, center, bear- ing, major axis, minor

axis)
Channel channel;
Objectld template;
MapPoint *center;
FLOAT bearing;
FLOAT major axis;

FLOAT minor axis,

ARGUMENTS
channel Specifies the connection to Cartographer; returned
from MOpenChannel.

template Specifies the ObjectAttributes used for drawing
the ellipse.

center Specifies the center point for the elipse.

bearing The bearing of the ellipse in degrees.
major axis
The major axis of the lipse in nautical miles.
minor axis
The minor axis of the ellipse in nautical miles.
DESCRIPTION

M DrawEllipse function draws an ellipse in the specified window. The elipseis drawn
with the specified major and minor axes. These values are in nautical miles. The major
axis of the ellipse always runs along the line of bearing. The bearing isameasurein
degrees from True North.

The template may be a Template, Class, or List object. In any case, the attributes from the

template object are copied into the attributes of the newly created object. If the template
isaList or aClass, the newly created object is

171

added as a member.

RETURNS
The Objectld value of the created object. The value Invali- dObjectld is returned if the
cal fails.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
Aninvalid template id was used.

BadValueError
Aninvalid center, bearing, major axis, or minor axis was specified.

SEE ALSO
MObjAtts(3C), MDestroyObject(3C)

172

MDrawLine

FUNCTION
Draw aline.
SYNTAX
C Interface
Objectld MDrawLine(channel, template, pointl, point2) Channel channel;
Objectld template;
MapPoint *pl;
MapPoint *p2;
ARGUMENTS
channel The connection to Cartographer; returned from
M OpenChannel.
template Specifies the ObjectAttributes used for drawing
the line segment.
pl An endpoint for placing the line segment.
p2 An endpoint for placing the line segment.
DESCRIPTION

The MDrawL ine function draws a line segment in the specified window.

The template may be a Template, Class, or List object. In any case, the attributes from the
template object are copied into the attributes of the newly created object. If the template
isaList or aClass, the newly created object is added as a member.

RETURNS
The Objectld value of the created object. The value Invali- dObjectld is returned if the
call fails.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid template id was used.

SEE ALSO
MObjAtts(3C), MDestroyObject(3C)

173

MDrawPolyLine

FUNCTION
Draw a multiple segment line.

SYNTAX
C Interface
Objectld MDrawPolyLine(channel, template, points, npoints)
Channel channdl;
Objectld template;
MapPoint *points;
int npoints,
ARGUMENTS
channel Specifies the connection to Cartographer; returned
from MOpenChannel.

template Specifies the ObjectAttributes used for drawing
the line.

points A pointer to an array of points.
npoints The number of pointsin the array.

DESCRIPTION
The MDrawPolyL ine function draws a polyline in the specified window.

The template may be a Template, Class, or List object. In any case, the attributes from the
template object are copied into the attributes of the newly created object. If the template
isaList or aClass, the newly created object is added as a member.

RETURNS
The Objectld value of the created object. The value Invali- dObjectld is returned if the
cal fails.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid template id was used.
BadValueError

174

An invalid point was specified.
SEE ALSO
MObjAtts(3C), MDestroyObject(3C),

175

MDrawPolygon

FUNCTION
Draw a polygon.

SYNTAX
C Interface
Objectld MDrawPolygon(channel, template, points, npoints)
Channel channdl;
Objectld template;
MapPoint *points;
int npoints,
ARGUMENTS
channel The connection to Cartographer; returned from
M OpenChannel.

template Specifies the ObjectAttributes used for drawing
the polygon.

points A pointer to an array of points.
npoints The number of pointsin the array.

DESCRIPTION
The M DrawPolygon function draws a polygon in the specified window. This routine
works the same as M DrawPolyline except that it closes the polygon by adding the first
point to the end of the polygon, and that a Polygon can be filled.

The template may be a Template, Class, or List object. In any case, the attributes from the
template object are copied into the attributes of the newly created object. If the template
isaList or aClass, the newly created object is added as a member.

RETURNS
The Objectld value of the created object. The value Invali- dObjectld is returned if the
cal fails.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid template id was used.

176

BadValueError
An invalid point was specified.

SEE ALSO
MObjAtts(3C), MDestroyObject(3C),

177

MDrawRectangle

FUNCTION
Draw arectangle.

SYNTAX
C Interface
Objectld MDrawRectangle(channel, template, p1, p2) Channel channel;
Objectld template;

MapPoint *pl;
MapPoint *p2;
ARGUMENTS
channel The connection to Cartographer; returned from
M OpenChannel.
template Specifies the ObjectAttributes used for drawing
the rectangle.
pl The upper left hand corner of the rectangle.
p2 The lower right hand corner of the rectangle.
DESCRIPTION

The M DrawRectangle function draws a rectangle in the specified window. The function
will be drawn according to the line_style field of the ObjectAttributes structure. The line
can be drawn as one of three types. GreatCircle, RhumbLine, or GeoDesic. The default
line type is GeoDesic, which connects the two points with a straight line on the screen.

The template may be a Template, Class, or List object. In any case, the attributes from the
template object are copied into the attributes of the newly created object. If the template

isaList or aClass, the newly created object is added as a member.

RETURNS

The Objectld value of the created object. The value Invali- dObjectld is returned if the

call fails.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid template id was used.

178

BadValueError
An invalid point was specified.

SEE ALSO
MObjAtts(3C), MDestroyObject(3C)

179

MDrawSector

FUNCTION
Draw a sector.
SYNTAX
C Interface
Objectld MDrawSector(channel, template, center, bear- ing, rangel, range2,
anglel, angle?)
Channel channel;
Objectld template;
MapPoint *center;
FLOAT bearing;
FLOAT rangel,
FLOAT rangez;
FLOAT anglel,;
FLOAT anglez;
ARGUMENTS
channel The connection to Cartographer; returned from
M OpenChannel.

template A reference to ObjectAttributes used for drawing the Sector.

center The center point of the arc, in decimal degrees.

bearing The bearing of the mgjor axis from true north in
degrees.
rangel The radius of the first arc in nautical miles.
range? The radius of second arc in nautical miles.
anglel The start of the arc in degrees from true north.
angle?2 The extent of the arc in degrees from true north.
DESCRIPTION
The MDrawSector function draws two circular arcs connected by line segments. Both
arcs are drawn with the same center point, are drawn through the same angular range,
and have

radii of rangel and range2. The two arcs are connected by line segements.

The template may be a Template, Class, or List object. In any case, the attributes from the
template object are copied into the attributes of the newly created object. If the template
isaList or aClass, the newly created object is added as a member.

180

RETURNS
The Objectld value of the created object. The value Invali- dObjectld is returned if the
cal fails.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid template id was used.

BadValueError
Aninvalid value for one of the arc parameters was specified.

SEE ALSO
MObjAtts(3C), MDestroyObject(3C)

181

MDrawSegment

FUNCTION
Draw a segment.

SYNTAX
C Interface
Objectld MDrawSegment(channel, template, location, bearing, length)
Channel channel;
Objectld template;
MapPoint *location;
FLOAT bearing;
int length;
ARGUMENTS
channel The connection to Cartographer; returned from
M OpenChannel.

template Specifies the ObjectAttributes used for drawing
the line segment.

location The location to place the segment. This location specifies the starting point for
the line segment to be drawn.

bearing The bearing of the segment in degrees from true
north.

length The length of the segment in pixels.

DESCRIPTION
The MDrawSegment function draws a segment in the specified window. A segment isa
line with afixed length. The length is specified in pixels, not nautical miles. This causes
the segment to remain a fixed size regardless of the scale of the map. The segment is
drawn based on a bearing in degress from North. The length and bearing of a segment can
be changed without having to destroy and recreate it using the function M SetSegment.
The MDrawSlash call is similar, with only subtle differences.

The template may be a Template, Class, or List object. In any case, the attributes from the
template object are copied into the attributes of the newly created object. If the template
isaList or aClass, the newly created object is

added as a member.
RETURNS

182

The Objectld value of the created object. The value Invali- dObjectld is returned if the
call fails.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid template id was used.

BadValueError
An invalid |ocation, bearing, or range was specified.

SEE ALSO
MObjAtts(3C), MDestroyObject(3C), MDrawSlash(3C), M SetOffset(3C),
M SetSegment(3C)

183

MDrawSlash

FUNCTION
Draw adash.
SYNTAX
C Interface
Objectld MDrawSlash(channel, template, location, bear- ing, length)
Channel channel;
Objectld template;
MapPoint *location;
FLOAT bearing;
int length;
ARGUMENTS
channel The connection to Cartographer; returned from
M OpenChannel.

template Specifies the ObjectAttributes used for drawing
the dash.

location The location to place the dash; the drawn line will be centered around this point.

bearing The bearing of the dash in degrees from true
north.

length The length of the dash in pixels.

DESCRIPTION
The MDrawSlash function draws a slash in the specified window. A dashisalinewith a
fixed length. The length is specified in pixels, not nautical miles. This causes the slash to
remain a fixed size regardless of the scale of the map. The dashisdrawn based on a
bearing in degress from North. Slash segments differ from line segments drawn by the
MDrawSegment call in the following ways:

(1). Thedashlineisdrawn with the specified location as the line's center point. The
segment line is draw with the specified location as the line's starting point.

(2). A dashline cannot be moved using the M SetSegment
call.

The template may be a Template, Class, or List object. In any case, the attributes from the
template object are copied into the attributes of the newly created object. If the template

184

isaList or aClass, the newly created object is added as a member.

RETURNS
The Objectld value of the created object. The value Invali- dObjectld is returned if the
call fails.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid template id was used.

BadValueError
An invalid |ocation, bearing, or range was specified.

SEE ALSO
MDestroyObject(3C), MDrawSegment(3C), MObjAtts(3C),
M SetOffset(3C)

185

MDrawSymbol

FUNCTION
Draw a symbol.
SYNTAX
C Interface
#include <M/Symbols.h>
Objectld MDrawSymbol(channel, template, symbol, size, location)
Channel channel;
Objectld template;
NTDSSymbol symbol;
int size;
MapPoint *|location;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
from MOpenChannel.
template Specifies the ObjectAttributes used for drawing
the symbol.
symbol The NTDS symbol to be drawn.
sze The NTDS symbol font size to be drawn. Valid
valuesare: Tiny, Small, Medium, Large, Huge, TinyBold, SmallBold,
MediumBold, LargeBold, Huge- Bold.
location The center point of the symbol to be drawn.
DESCRIPTION

The MDrawSymbol function draws a symbol in the specified window. This routine draws
a symbol centered about the specified center point. The symbol must be one of the ele-
ments of the NTDS font. Most symbolsin this font have predefined constants for the
charactersto add to a program's readability. The list of constants are referenced by
including the file <M/Symbols.h>.

The symbols to be drawn can be of different sizes by modifying the size parameter. The
template will affect the color of the symbol that is drawn; however, the font used by this

command is preselected (ie. the template font attribute isignored). The MDrawChar()
and MDrawChar16() functions are more general purpose.

186

The template may be a Template, Class, or List object. In any case, the attributes from the
template object are copied into the attributes of the newly created object. If the template
isaList or aClass, the newly created object is added as a member.

FONT INFORMATION
Cartographer Manager provides a set of symbols for drawing symbolic information onto
the map. These symbols are located in defined 16 bit character fonts, and can be drawn
using either the MDrawSymbol() or the MDrawChar16() calls. The predefined constants
used by the MDrawSymbol() call map out to the following font names:

Tiny
-chart-ntds-medium-r-normal--13-130-7575-m-130-is08859-1

Small
-chart-ntds-medium-r-normal--21-210-7575-m-210-is08859- 1

Medium
-chart-ntds-medium-r-normal--31-310-7575-m-310-is08859-1

Large
-chart-ntds-medium-r-normal--41-410-7575-m-410-is08859-1

Huge
-chart-ntds-medium-r-normal--51-510-7575-m-510-is08859- 1

TinyBold -chart-ntds-bold-r-normal--13-130-75-75-m-130-is08859- 1
SmallBold -chart-ntds-bold-r-normal--21-210-75-75-m-210-is08859- 1
MediumBold -chart-ntds-bold-r-normal--31-310-75-75-m-310-is08859- 1
LargeBold -chart-ntds-bold-r-normal--41-410-75-75-m-410-is08859- 1
HugeBold -chart-ntds-bold-r-normal--51-510-75-75-m-510-is08859- 1

Note: these fonts must be installed prior to attempting to use them. In the event that the
font cannot be loaded, a substitute (text) font is used instead.

RETURNS
The Objectld value of the created object. The value Invali- dObjectld is returned if the
cal fails.

STRUCTURES
C Interface

The NTDSSymbol construct is used for specifying predefined symbols from the
NTDS font sets. Each NTDS character has a unique identifier constant defined in

187

the include file <M/Symbols.h>.

typedef int NTDSSymbol;

BadChannel
Aninvalid channel id was used.
BadObjectld
An invalid template id was used.
BadValueError
Aninvalid symbol, size, or location was specified.
SEE ALSO
M ChangeSymbol(3C), M DestroyObject(3C), MObjAtts(3C), M SetOffset(3C),
M SetSymbol Size(3C)

188

MDrawT ext

FUNCTION
Draw text.
SYNTAX
C Interface
Objectld MDrawText(channel, template, text, ntext, location, x offset, y offset)
Channel channel;
Objectld template;
char *text;
int ntext;
MapPoint *|ocation;
int x offset;
int y offset;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
from MOpenChannel.
template Specifies the ObjectAttributes used for drawing
the text string.
text Specifies the text to be drawn.

ntext The number of charactersin the string to be
drawn.

location Specifies the location of the text to be placed in the window.

x offset The offset in pixels from the center point for the text.

y offset The offset in pixels from the center point for the text.

DESCRIPTION
The MDrawText function draws a text string in the specified window. The text will be
drawn with the font specified in its attributes. The text is positioned at the pixel offset
specified by x offset and y offset, from the center point specified.

The template may be a Template, Class, or List object. In any case, the attributes from the
template object are copied into the attributes of the newly created object. If the template
isaList or aClass, the newly created object is added as a member.

189

RETURNS
The Objectld value of the created object. The value Invali- dObjectld is returned if the

cal fails.
ERRORS
BadChannel
Aninvalid channel id was used.
BadObjectld
An invalid template id was used.
BadValueError
Aninvalid |ocation or offset was specified.
SEE ALSO

M ChangeText(3C), MDrawAngleText(3C), MDestroyObject(3C),
MObjAtts(3C), M SetOffset(3C)

190

MDrawW eather

FUNCTION
Draw aweather segment.

SYNTAX
C Interface
Objectld MDrawWeather(channel, template, front type, points, npoints)
Channel channdl;
Objectld template;
FrontType front type;
MapPoint *points;
int npoints,
ARGUMENTS
channel Specifies the connection to Cartographer; returned
from M OpenChannel.
template Specifies the ObjectAttributes used for drawing
the line.
front type

Specifies what type of front isto be drawn.
points A pointer to an array of points.
npoints The number of pointsin the array.
DESCRIPTION

The MDrawWesather function draws a weather line to the specified window. Valid
FrontTypes are: WarmFront, ColdFront, OccludedFront, and StationaryFront.

The template may be a Template, Class, or List object. In any case, the attributes from the
template object are copied into the attributes of the newly created object. If the template
isaList or aClass, the newly created object is added as a member.

RETURNS
The Objectld value of the created object. The value Invali- dObjectld is returned if the

call fails.

ERRORS

191

BadChannd

Aninvalid channel id was used.
BadObjectld
An invalid template id was used.

BadValueError
An invalid point was specified.

SEE ALSO
MObjAtts(3C), MDestroyObject(3C),

192

MDrawWorld

FUNCTION
Draw aworld view map in specified window.

SYNTAX
C Interface
void MDrawWorld(channel, window)
Channel channdl;
Windowld window;
ARGUMENTS
channel The connection to Cartographer; returned from
M OpenChannel.
window The window to which the map draw is directed.
DESCRIPTION

MDrawWorld draws aworld view map to the given window. The projection, feature, and
color models remain unchanged. The product list is based on the current set of map
products, modified by setting the subtype fieldsto AnyMap. This allows productsin the
given class which are displayable at world view to be loaded in. If no products can be
drawn from the current set, then the default set (VectorMap class, AnyMap subtype) is

displayed.

ERRORS
SEE ALSO
n/a

193

MError

FUNCTION
Cartographer Manager error handling routines.
SYNTAX
C Interface
#include <M/Merror.h>
void M SetErrorHandler(handler)
MapErrorProc handler;
void MResetErrorHandler()
void M Setl OErrorHandler(handler) Mapl OErrorProc handler;
void MResetl OErrorHandler()
char *MErrorToString(error code) MapStatus error code;
#include <M/Mproto.h>
char *MMajorCodeT oString(major code) Protocol major code;
char *MMinorCodeToString(minor code) Protocol minor code;
ARGUMENTS
handler An application specific error handler.
ror code
The code number of the generated error. Error codes are described in each
Chart Manager manual page under the "ERRORS" heading.
major code
The mgjor code number of the generated error.
minor code
The minor code code number of the generated error.
DESCRIPTION

The Chart Manager Library has two asynchronous error handler routines that are called
whenever an error occurs within the Chart Manager. One handler deals exclusively with
1O errors and the other handles all other errors. Both error handlers can be replaced with
user-defined handlers by using the routines M Setl OErrorHandler and M SetErrorHandler.
Once the error handler is replaced by a user routine, the user routine will be called

194

whenever an error occurs. The default handlers that the library defines can be restored
with the

routines. MResetl OErrorHandler and MResetErrorHandler. The Chart Manager error
service provides a default handler which prints a message to the standard error device for
al non-10 errors. Thishandler isaso called if your client's error handler returns a non-
zero value. The application can substitute its own routine in lieu of the default routine by
using the M SetErrorHandler routine. Available to the user are three routines for
converting internal Chart Manager codes to strings. These routines are: MErrorToString,
MMa- jorCodeT oString, and MMinorCodeT oString.

The MErrorToString routine provides a small text description for each error code, the
MMajorCodeT oString routine provides a text description for each major protocol code in
the Chart Manager, and the MMinorCodeT oString routine provides a text description for
each minor protocol code in the Chart Manager. All three routines return the text string
"Unknown" in the case where the input code is not defined by the Chart Manager. All
three routines return pointers to static string buffers which should not be modified by the
caller.

The application error handler routine is called with the following format whenever a Chart
Manager error occurs:

int
(*handler) (channel, window, major code, minor code, error code,
error info)
Channel channel;
Windowld window;
Protocol major code;
Protocol minor code;

MapStatus error code; MapErrorCodel nformation *error info;

The channel indicates the channel over which the error
occurred. channel is set to InvalidChannel if the call generating the error has no associated direct
communications with the Chart Manager.

The window parameter indicates the map window generating the error. window is set to
InvalidWindowld if the call generating the error has no associated map window.
Examples of such calls include M OpenChannel.

The major code and minor code can be used by the application to handle errors for a
specific Chart Manager request. The error code parameter can be used by the application
to handle specific errors. The error info is returned along with some errors (specifically

195

map related errors), to specify

additional information concerning the error. |f the passed argument isnon-NULL, then
the information takes the form of a MapErrorCodel nformation structure (specified in the
STRUCTURES section below).

The MResetErrorHandler call resets the error handler back to the default error handler.

The 1O error handler prints the same information as the default error handler, it also
causes the program to exit after ther message is printed. An 1O error will be fatal and
must be handled by the Client program in order for execution to continue. There
parameters to the 1O error handler are the same except that there is no window parameter.

RETURN
Certain error routines return a string value. This value is statically assigned, and should
NOT need to be freed using free. Your library error handler, specified using the
M SetErrorHandler() call, should return the value O if the error was processed, and the
value non-zero if it was not. In the case where the error is not processed, the default error
handler is called, and an error message is printed to the standard error (stderr) device.

STRUCTURES
C Interface

typedef int MapStatus;

typedef short Protocol;

typedef int (*MapErrorProc)(
Channel channel,
Windowld window,
Protocol major_code,
Protocol minor_code,

MapStatus error_code,
MapErrorCodel nformation *error_info);

typedef void (*Mapl OErrorProc)(
Channel channel,
Protocol major_code,
Protocol minor_code,

MapStatus error_code);

typedef struct {
MapType map_type;
MapSubType sub_type;
FeatureType feature type; FeatureSubType feature subtype;
ProjectionType projection;

196

} MapErrorCodel nformation;

The Protocal value is used to uniquely determine the M library request generating the
error. The MapStatus value classifies an error. The VALUES section of this manual page
describes al possible values for MapStatus. The MapEr- rorProc is the name of a
procedure which gets called if an error occurs. The Mapl OErrorProc is the name of a
procedure which gets called if an 1/0 error occurs. Note that both procedures have
parameter definitions included if your C compiler supports this.

The MapErrorCodel nformation structure provides further information for certain kinds of
errors. Thefieldsin this structure are defined as follows:

map_type
This field indicates the type of map product causing the error. These values are
internally encoded. Values depend upon the Draw Modules currently connected to
the Chart Manager. Thisfield is set to the value AnyMap if the cause of the error
is due to afeature product, and not a map product.

sub type
Thisfield indicates the subtype of map product causing the error, given a specific
map type. Similar to the map type field, thisfield is internally encoded.

projection
This field indicates the projection causing the error. Thisfield is internally encoded.
This field specifies the name of the unsupported projection, for example, when a
ProjectionNotSupported error occurs.

feature type
This field indicates the type of feature product causing the error. These values are
internally encoded. Values depend upon the Draw Modules currently connected to
the Chart Manager. Thisfield is set to the value AnyFeature if the cause of the
error is due to amap product, and not a feature product.

feature_subtype
Thisfield indicates the subtype of feature product causing the error, given a
specific feature type. Similar to the feature type field, thisfield is internally
encoded.

VALUES

MapStatus

AlreadyConnected
The connection to the specified Chart Manager already exists. See
M OpenChannel(3C).

AlreadyDrawingMap

197

A map draw request for the specified window is already in progress.

BadChannel
The specified channel isinvalid.

BadDisplay
The referenced display is no longer valid. This can occur if aremote X
server exits while Chart Manager has awindow to it still defined.

BadMapEntry

BadObjectld
The specified object isinvalid, or does not exist.

BadOwner
The specified application is attempting to use a map window without
having previoudly performed a MUseWindow or MUseNamedWindow
call.

BadRecord
The specified record in a particular file isinvalid.

BadServer
A request is being made to draw a map whose responsible Draw Module
has terminated.

BadTemplate
The specified template is invalid, or no longer exists.

BadValueError
The specified value is invalid for the given call.

BadVolume
The specified volume path does not exist, or else it cannot be read.

BadwWindowld
The specified window isinvalid, or has been previously deleted.

BadWindowName
The specified window name does not exist, or else

isinvalid. See MUseNamedW(3Map).
DataSyncError
The Client/Manager protocol isout of sync. Some data may have been
lost.
ErrorDrawingFeature
ErrorDrawingMap

198

FeatureNotAvailable
FeatureNotSupported
HardwareNotSupported
MapDrawAborted
MapNotFound
MapTooSmall
MaxExtents
MaxScale
MinScale
NoError

No error defined.

NoMapsDrawn
NotEnoughColors

OutOfMemory
The Chart Manager has run out of memory. This usually occurs because of
afailure in the mal- loc(3) call.

ProductNotFound
ProjectionNotSupported

SocketError
An exception occurred on the specified socket. Thisis generally the error
code seen by an M library I/O handler.

SystemNotSupported

TooManyEvents
The Chart Manager event queueisfull. The event which caused this had to
be thrown away.

TooManyMaps
UnresponsiveDrawModule

UnknownError
The specified error is undefined.

WorldFitProblem

SEE ALSO
MOpenChannel (3C), MUseWindow(3C), MUseNamedWindow(3C), malloc(3), stdio(3),

199

ERRORS section under each application call.

200

MExchangeObiject

FUNCTION
Exchange an object between one class or list and another class or list.

SYNTAX
C Interface
void M ExchangeObject(channel, object, oldclass, newclass, atts mask)
Channel channel;
Objectld object;
Objectld oldclass,
Objectld newclass;
MapVaueMask atts mask;
ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

object The object being moved from one class or list to
another classor list.

oldclass Thelist or class from which the object will be
removed.

newclass Thelist or class to which the object will be
added.

atts mask The object attributes mask to apply when applying the newclass object attributes
to object.

DESCRIPTION
M ExchangeObject moves the specified object from one class or list to another class or list.
After performing the exchange, the new class's attributes are applied to the object using
the specified object attributes mask. Note that object can be any one of type class,
drawable or list, but object cannot be of type template.

ERRORS
BadChannel
An invalid channel id was used.
BadObjectld

201

An invalid object id was used.
SEE ALSO
MAddObject(3C), MDestroyList(3C), MDestroyObject(3C),
MRemoveObject(3C)

202

MFlush

FUNCTION
Flush the output buffer.
SYNTAX
C Interface
void MFush(channel)
Channel channel;
ARGUMENTS
channel The connection to Cartographer; returned from
M OpenChannel.
DESCRIPTION

MFlush flushes the output buffer, causing al buffered
requests to be sent to Cartographer.

ERRORS
BadChannel
An invalid channel id was used.
SEE ALSO

MOpenChannel (3C), M CloseChannel(3C) M Sync(3C)

203

MFlushAllEvents

FUNCTION
Flush the event queues for al channels.

SYNTAX
C Interface
void MFushAllEvents()

DESCRIPTION
MFlushAllEvents removes al of the events from the input queue. Thisincludes all events
received from the Chart Manager, as well as al events placed on the queue by M Put-
BackEvent.

MFlushAllEvents differs from MFush because MFushAllEvents flushes the events on all
channels which this application is connected to, whereas MFlush flushes the requeststo a
specific Chart Manager.

SEE ALSO
MFlush(3C), MNextEvent(3C), MPending(3C)

204

MGetProjectionData

FUNCTION
Retrieve the projection data structure in use for the window coordinate system.
SYNTAX
C Interface
MapStatus M GetProjectionData(channel, window, pd) Channel channel;
Windowld window;
ProjectionData *pd;
ARGUMENTS
channel The connection to the Chart Manager; returned from
M OpenChannel.
window The window Id of the window to query.
pd The projection data structure currently in use for
the window.
DESCRIPTION

The MGetProjectionData routine retrieves the current projection data structure for the
given window. The routine returns NoError when a valid projection data structure is
retrieved and filled in. Normal cases of coordinate conversion should use the calls

M PositionT oPixels and MPixelsToPo- sition.

RETURN
The function returns a status value indicating whether or
not the data structure was retrievable. A status of NoError indicates that the retrieval was

successful.
ERRORS
BadChannel
An invalid channel or window was specified.
BadValueError
A convert data structure could not be retrieved because the pointer passed is
invalid.
SEE ALSO

MPixelsToPosition(3C), MPositionToPixels(3C)

205

MGetSearchPath

FUNCTION
Get the current map search path.
SYNTAX
C Interface
char **M GetSearchPath(channel, npaths)
Channel channel;
int * npaths;
ARGUMENTS
channel Specifies the connection to Chart returned by
M OpenChannel.

npaths Assigned the number of map search pathsin the
list.

DESCRIPTION
The M GetSearchPath returns the current search path the Chart Server isusing to get its
list of maps for display. Thelist is returned, along with the number of pathsin the list.
The space for the path list, and each individual path were allocated using malloc(), and
should be freed using freg().

ERRORS
BadChannel
An invalid channel id was used.

BadVolume
The specified volume isinvalid.

SEE ALSO
MReloadSearchPath(3Map), MAddV olume(3Map), MRemoveV olume(3Map),

206

MGetServiceContext

FUNCTION
Get copy of service context used by M library.

SYNTAX
ServiceContext M GetServiceContext()

DESCRIPTION

The MGetServiceContext routine returns a reference to the ServiceContext used by the M
library. If thelibrary has not yet been initialized, initialization takes place prior to
returning to the caller. The ServiceContext can be used directly in any library calls
requiring a ServiceContext parameter.

207

MGetXWindow

FUNCTION
Return the X Window ID of a geographic display window.
SYNTAX
C Interface
int MGetXWindow(channel, window)
Channel channel;
Windowld window;
ARGUMENTS
channel Specifies the connection to Chart; returned from
M OpenChannel.
window Specifies the window whose ID isto be returned.
DESCRIPTION

The MGetXWindow function returns the X Window 1D of the specified geographic
display window. The Chart Manager Window 1D and X Server Window ID are unique
and different numbers. The Chart Manager Window ID is used to reference a particular
window created in Chart. The X Window ID can be used to resize, move, reparent, etc.,
the X Window containing the geographic display. This function is usually only necessary
if awindow isto be reparented.

RETURNS
An X Windows Window identifier for the map widget.

ERRORS
BadChannel
An invalid channel id was used.

Badwindowl!d
An invalid window id was used.

SEE ALSO
M CreateWindow(3Map), X CreateWindow(3X11)

208

MKillServer

FUNCTION
Shut down Chart.
SYNTAX
C Interface
void MKillServer(channel, kill code)
Channel channel;
int Kill code;
ARGUMENTS
channel The connection to Chart; returned from M OpenChan-
nel.
kill code A security code that must match the code within
Chart.
DESCRIPTION

MKillServer causes Chart to shut down. All connections will be closed, and all windows
will be destroyed. The Chart Manager will not quit unless the security code contained in
kill code matches the code within Chart.

ERRORS
BadChannel
The channdl id was invalid.
SEE ALSO

MOpenChannel (3C), M CloseChannel(3C)

209

MListFeatures

FUNCTION
List the features available on the Chart Manager.

SYNTAX
C Interface
FeatureListAttributes * M ListFeatures(channel, feature type , sub type, nfeatures)

Channel channel; FeatureType feature type; FeatureSubType sub

type;
int * nfeatures; /* RETURN */

ARGUMENTS
channel

The connection to the Chart Manager; returned from M OpenChannel.

feature type
The feature type filter for the List of Features. The internal constant
AnyFeature will list al features regardless of type.

sub type The sub type filter for the List of Features. The internal constant AnyFeature
will list al features regardless of their sub types.

nfeatures The number of records returned from the call, and a corresponding number of
records is referenced by the FeatureL istAttributes pointer.

DESCRIPTION
The MListFeatures function Lists all of the features that
are available in the Chart Manager. The Chart Manager filters the feature list based on the
parameters that are passed to it. The wild card AnyFeature can be used to match all
feature types.

The information returned by ML istFeatures can be used by a Client to display one of the
features. The boundary points returned represent the boundary points for the feature as a
whole. These will be different values in order for the feature to be displayed in awindow.
Each

Featurel istAttributes record also returns a set of FeatureAttributes These attributes are
the default attributes used by the Draw Module responsible for rendering the feature.

If an error occurs during the query NULL isreturned and

210

nfeatures will be 0.
In the C Version, the memory allocated to store the list of features must be freed by the
Client program viaacall to MFree.
The feature type and sub type fields should either derive their values from the
MuReference(3Mu) routines, or else be set to the constant AnyFeature. Note: this
constant cannot be statically assigned.
RETURN
C Interface
A pointer to an array of map structures is returned, with the number of elementsin
the structure returned in nfeatures. On failure NULL is returned.

STRUCTURES
C Interface

typedef unsigned int FeatureType;
typedef unsigned int FeatureSubType;

typedef struct {
FeatureType feature type;
FeatureSubType sub type;
} FeatureProduct;

typedef struct {
short line_width;
short fill_weight;
short fill_offset;
short priority;
MapColor color;
MapFillType fill_type;
MapLineStyle line_style;
Boolean show_border;
Boolean show_bgrd;
FLOAT upper_width;

char font_name[FONT_

211

type

NAME_LENGTH I;

} FeatureAttributes;

typedef struct _FeatureListAttributes { FeatureProduct type;
MapL abelAttributes label;
FeatureAttributes defaults;
MapL ocationAttributes location;

} FeatureListAttributes,

The fidlds within the FeatureL istAttributes
structure are described below:

A FeatureProduct structure specification which is used to uniquely specify the
feature product. Thisinformation can be used by itself to request that the feature
be drawn (say within a MAddFeature(3Map) or MChangeMap(3Map) call. This
structure contains the following elements:

feature type
Thisfield indicates the type of feature product to be displayed. These
values are internally encoded, and can be referenced using the
MuReference(3Mu) utilities. Valid values depend upon the Draw Modules
currently connected to the Chart Manager.

sub_type
Thisfield indicates the subfeature to be displayed, given a specific feature
type. Similar to the feature type field, thisfield isinternally encoded, and
can be referenced using the MuReference(3Mu) utilities.

A MapL abelAttributes structure which contains information describing the map
product and its coverage. The values contained in this structure are free text
values, but generally contain the following information:

name
The place name for the feature, such as " California Roads".

label
A free text field which contains any special comments concerning this
feature.

filename
The name of the file where the data header is
located. Thisisgenerally the location of the feature data as well.

location

212

A Mapl ocateAttributes structure describing the coverage of the given feature
product. The fields are described as follows:

center
The lat/long value of center point of the feature, as it exists in the database.

top_left

The lat/long value of the top left corner of the feature, asit existsin the
database.

bottom_right

The lat/long value of the lower right corner of the feature, asit existsin the
database.

supported projections
A list of projections under which the Draw Module drawing this product
can render it. The list may include the value AnyProjection.

num_projections
The number of projections that are supported for the rendering of this
feature product. This value isthe number of valid itemsin the
supported projections field described above.

scale_recommend
The recommended scale of the feature. The units for this are nautical miles
per pixel. Thisalowsall featuresto be referenced the same way. This
value can be used to do rough calculations for items on the screen, but
should not be counted on to be accurate as al projections are not
necessarily linear.

scale_upper
The upper scale for the feature. The units for this are nautical miles per
pixel. Thisisthe largest scale supported by the associated Draw Module
rendering the product. Requests to draw the feature larger result in a
MaxScale error.

scae lower
The lower scale for the feature. The units for this are nautical miles per
pixel. Thisisthe smallest scale at which the feature will be drawn.
Requests to draw the feature smaller result in a

MinScale error.
defaults
A default set of rendering attributes which can be used as a basis for modifying the
way in which the feature gets rendered. For a detailed description of each itemin
the FeatureAttributes structure, refer to the M FeatAtts(3Map) man page.

213

ERRORS
BadChannel
An invalid channel id was used.

Badwindowl!d
The window id used was invalid.

OutOfMemory
Unable to alocate the memory to store the data.

SEE ALSO
M ChangeMap(3Map), MListMaps(3Map), MQueryFeatures(3Map)

214

MListMaps

FUNCTION
List the maps available in the Chart Manager.

SYNTAX
C Interface
MapListAttributes * MListMaps(channel, ul, Ir, map type, sub type, nmaps)
Channel channel;
MapPoint *ul;
MapPoint *Ir;
MapType map type;
MapSubType map subtype;
int * nmaps, /* RETURN */
ARGUMENTS
channel The connection to the Chart Manager; returned from
M OpenChannel.
ul, Ir

The location filter for the List of maps. Only those maps that lie within this
boundary are listed. The ul isthe upper left point of the bounding box, and the Ir
is lower right point of the bounding box. To list al maps regardless of the area
coverted, set either of the ul or Ir fieldsto the value NULL, or set the elevation
field of either point to -1.0.

map type The map type filter for the List of Maps. The internal constant AnyMap will list
all maps regardless of type.

sub type The sub type filter for the List of Maps. The internal constant AnyMap will list
all maps regardless of their sub types.

nmaps The number of maps contained in the MapL.ist.

DESCRIPTION
The MListMaps function Lists al of the Maps that are available in the Chart Manager.
The Chart Manager filters the map list based on the parametersthat are passed to it. The
wild card AnyMap can be used to match all map types. Also,

aNULL pointer, or an elevation value of -1.0 for the center point can be used asawild
card for center point. Thiswill cause the Chart Manager to match all maps regardless of
the areathat they cover.

215

The information returned by MListMaps can be used by a Client to display one of the
maps. The boundary points returned represent the boundary points for the map as a
whole. These will be different values in order for the map to be displayed in awindow. It
is best to usethe

scale recommend value if thisinformation isto be used in a MChangeMap call. This
eliminates the need for the Client program to calculate the boundary points, and worry
about correct map aspect ratios.

If an error occurs during the query NULL is returned.

In the C Version, the memory allocated to store the List of Maps must be freed by the
Client program viaacall to MFree.

RETURN
C Interface
A pointer to an array of map structures is returned, with the number of elementsin
the structure returned in nmaps. On failure NULL is returned.

STRUCTURES
C Interface

typedef unsigned int MapType;
typedef unsigned int MapSubType;

typedef struct {

MapType map_type;
MapSubType sub type;

} MapProduct;

typedef struct _MapL abelAttributes {
char name[

NAME_LENGTH + 1];
char labell LABEL_LENGTH + 1];

char filename] FILE

NAME_LENGTH +11];
} MapLabelAttributes, * MapL abelAttributesList;

216

typedef struct _MapL ocationAttributes {
MapPoint center;
MapPoint top_left;
MapPoint bottom right;
FLOAT scale upper;
FLOAT scale lower;
FLOAT scale recommend;
ProjectionType supported projection NUM_PROJECTIONS]; int
num_projections,
} MapLocationAttributes, * MapL ocationAttributesList;

typedef struct _MapListAttributes {
MapProduct type;
MapL abelAttributes label;
MapL ocationAttributes location;
} MapListAttributes, *MapListAttributesList;

The fields within the MapListAttributes structure are

described below:

type

A MapProduct structure specification which is used to uniquely specify the map
product. In conjunction with the MapL ocateAttributes structure, draw requests
are formed based upon this information. This structure contains the following
elements:

map_type
This field indicates the type of map product to be displayed. These values
are internally encoded, and can be referenced using the MuReference(3Mu)
utilities. Valid values depend upon the Draw Modules currently connected
to the Chart Manager.

sub type
Thisfield indicates the subtype of product to be displayed, given a specific
map type. Similar to the map type field, thisfield isinternally encoded, and
can be referenced using the MuReference(3Mu) utilities.

A MapL abelAttributes structure which contains information describing the map
product and its coverage. The values contained in this structure are free text
values, but generally contain the following information:

name

217

The place name for the map, such as " Camp Pendleton, California’.

e A free text field which contains any special comments concerning this map.
filename
The name of the file where the data header is
located. Thisisgenerally the location of the map data as well.
location

A Mapl ocateAttributes structure describing the coverage of the given map
product. The fields are described as follows:

center
The lat/long value of center point of the map, as it exists in the database.

top_left
The lat/long value of the top left corner of the map, asit existsin the
database.

bottom_right
The lat/long value of the lower right corner of the map, asit existsin the
database.

supported projections
A list of projections under which the Draw Module drawing this product
can render it. The list may include the value AnyProjection.

num_projections
The number of projections that are supported for the rendering of this map
product. Thisvalue isthe number of valid itemsin the
supported projections field described above.

scale_recommend
The recommended scale of the map. The units for this are nautical miles
per pixel. Thisalows all mapsto be referenced the same way. Thisvaue
can be used to do rough calculations for items on the screen, but should
not be counted on to be accurate as al projections are not necessarily
linear.

scale_upper
The upper scale for the map. The units for this are nautical miles per pixel.
Thisisthe largest scale supported by the associated map generator
product. Requests to draw the map larger are not complied with.

scale lower
The lower scale for the map. The units for this are nautical miles per pixel.

218

Thisisthe smallest scale at which the map will be drawn. Requests to draw
the map smaller are not complied

with.
ERRORS
BadChannel
An invalid channel id was used.

Badwindowl!d
The window id used was invalid.

OutOfMemory
Unable to alocate the memory to store the data.

SEE ALSO
M ChangeM ap(3Map), MQueryMap(3Map)

219

MListObjects

FUNCTION
Object search utility.

SYNTAX
C Interface
ObjectListAttributes * M ListObjects(channel, atts, mask, nobjects)
Channel channel;
ObjectListSearchAttributes *atts;
MapVaueMask mask;
int * nobjects, /* RETURN */
ARGUMENTS
channel The connection to the Chart Manager; returned from
M OpenChannel.
search atts
The criterea used in the search of the Chart Manager object database.
mask A value mask used to specify those fields in the

search critereawhich are of interest to the Chart Client.

nobjects The number of records returned from the call, and a corresponding number of
records is referenced by the ObjectListAttributes pointer. Inthe C Version
this pointer is returned as a value by the function, the Ada VVersion returns
this pointer as one of the parameters.

DESCRIPTION
The MListObjects function lists al of the objects that are available in the Chart Manager.
The Chart Manager filters the object list based on the search criteria that is passed to it.

The information returned by MListObjects can be used by a Client to query or modify one
of the objects. If an error occurs during the query NULL is returned.

In the C Version, the memory allocated to store the list of objects must be freed by the
Client program viaacall to MFree.

RETURN
A pointer to an array of ObjectListAttributes structuresis returned, with the number of
elements in the structure returned in nobjects. On faillure NULL is returned.

220

STRUCTURES
C Interface
typedef int ObjectType;
typedef int ObjectSubType;
typedef int Objectld;

typedef struct {
ObjectType type;
ObjectSubType subtype;
Objectid class;
Objectld list;
MapPoint region[2];
Windowld window;
Boolean pickability;
Boolean vishility;

} ObjectListSearchAttributes;

typedef struct {

Objectidid;
char *data;
} ObjectListAttributes,

ERRORS
BadChannel
An invalid channel id was used.

BadValueError
Invalid search criterea specified.

OutOfMemory
Unable to alocate the memory to store the data.

SEE ALSO
MFree(3Map), MQueryObj(3Map)

221

MMainLoop

FUNCTION
Process input on sockets.

SYNTAX
void MMainLoop()

DESCRIPTION
The MMainL oop blocks input until it recelves a set of descriptors, and then calls the
appropriate routines.

222

MMapWindow

FUNCTION
Map awindow to the screen.
SYNTAX
C Interface
void MMapWindow(channel, window)
Channel channel;
Windowld window;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
from MOpenChannel.
window Specifies the window id.
DESCRIPTION

The MMapWindow maps awindow in Cartographer to the screen. Once created, a
window will not be visible until it is mapped to the screen.

ERRORS
BadChannel
An invalid channel id was used.

Badwindowl!d
An invalid window id was used.

SEE ALSO
M CreateM apWindow(3C), MUnMapWindow(3C), MDestroyWindow(3C)

223

MMemory

FUNCTION
Chart Manager memory allocation utilities.

SYNTAX
C Interface
char *MAlloc(size)
unsigned int Size;
char *MReAlloc(ptr, size)
char *ptr;
unsigned int Size;

void MFreg(ptrtoptr)
char **ptrtoptr;

ARGUMENTS
sze The size (in bytes) of the space to be allocated
(or redllocated).

ptr A pointer to the space which has already been
allocated.

ptrtoptr A pointer to the pointer to the space which has
been alocated. Thisis used by MFreg() in lieu of smply passing ptr so that
the address pointer then can be set to NULL. This prevents multiple calls
to MFreeg() from freeing the same address twice, which can produce
unpredictable (and sometimes hard to find) results.

DESCRIPTION
The MMemory calls provide a mechanism for allocating and freeing memory. They are
used only with the C interface.

MReAlloc() reallocates the memory block pointed to by ptr to be size bytes. If sizeis
greater than the block's previous size, then the contents pointed to by ptr are copied to the
new block. If size is smaller than the block's previous size, then size bytes of the contents
pointed to by ptr are copied to the new block. In either case, the space pointed to by ptr is
then freed. MReAlloc() returns NULL in cases where the alocation fails.

MFree() frees up ablock of memory which was allocated by MAlloc() or MReAlloc().
Note that the parameter passed to MFreg() is the address of the block pointer, rather than
the address of the block itself. Once the block is freed the block pointer addressis set to
NULL. Thenif MFree() is called again with the same block pointer address, it will
prevent freeing the same block twice, which can lead to unpredictable results.

224

MDebug discusses some debugging features which are available with the MMemory
routines.

RETURN
Both MAIlloc and MReAlloc return a pointer to the newly allocated space. They return
NULL if the call fails for some reason.

SEE ALSO
MDebug(3Map)

225

FUNCTION

MModifyFeature

Modify feature attributes on a map.

SYNTAX

C Interface

void MM odifyFeature(channel, window, feature, mode) Channel channel;

ARGUMENTS

channel

window

DESCRIPTION

Windowld window;
MapFeatureAttributes *feature;
ModificationMode mode;

The connection to the Chart Manager; returned from
M OpenChannel.

The window on which the feature isto be
displayed.

A map feature whose attributes are to be modified.
See MFeatAtts(3Map) for information on this structure's contents.

The mode to use when modifying the feature attri-

butes. The mode can be one of four values. ModifyAnd, ModifyOr,
ModifyXor, and ModifySet. See MM odifyFeatures(3Map) for more
information on this field.

MM odifyFeature modifies the drawing attributes of the specified feature onto the

currently drawn map. The effects of this call are not seen until the map gets redrawn.
Note that this call does not cause the map to redraw! Clients should use the
MU pdateFeatures call to see the changes take effect. Not all feature attributes have an

effect on the feature asit getsdrawn. The effect of the feature attributes depends on the
Draw Module responsible for drawing the particular feature.

ERRORS

BadChannd

An invalid channel id was used.

Badwindowl!d

226

An invalid window id was used.

BadValueError
Aninvalid or non-existent feature value was specified. Also occursif a bad
ModificationType is specified.

SEE ALSO
MAddFeature(3Map), MAddFeatures(3Map), MChangeMap(3Map), M FeatAtts(3Map),
MFeatMask(3Map), MM odifyFeatures(3Map), MRemoveFeature(3Map),
MRemoveFeatures(3Map), MuReference(3Mu)

227

FUNCTION

MModifyFeatures

Modify alist of feature attributes on a map.

SYNTAX

C Interface

void MM odifyFeatures(channel, window, feature,

nfeatures, mode)

ARGUMENTS
channel

window

feature

DESCRIPTION

Channel channdl;

Windowld window;
MapFeatureAttributes *feature;

int nfeatures;

ModificationMode mode;

The connection to the Chart Manager; returned from
M OpenChannel.

The window on which the features are to be
displayed.

A list of map features whose attributes are to be
modified on the map. See MFeatAtts(3Map) for information on this
structure's contents.

nfeatures The number of map features being modified.

The mode to use when modifying the feature attri-

butes. The mode can be one of four values. ModifyAnd, ModifyOr,
ModifyXor, and ModifySet. See STRUCTURES section below for more
detail on each value.

MM odifyFeatures modifies the drawing attributes of the specified features onto the

currently drawn map. The effects of this command are not seen until the map is redrawn.
The client should call MUpdateFeatures() to see the effects of the modified feature
attributes. Not all feature attributes have an effect on the feature as it getsdrawn. The
effect of the feature attributes depends on the Draw Module responsible for drawing the
particular feature.

228

STRUCTURES
C Interface
typedef int ModificationM ode;

The ModificationMode is used to specify how a Chart Client modifies
FeatureAttributes for a feature aready present on the display list. Four
modification types are permitted: ModifyAnd, ModifyOr, ModifyXor, and
ModifySet. Each of these affects the modification differently, depending on what
FeatureAttributes have been previously set using one of the M library calls which
affect afeature's display attributes.

The display list of features for a given map window is affected by the following
cals:. MModifyFeature(), MModifyFeatures(), MAddFeature(), MAddFeatures(),
MRemoveFeature(), MRemoveFeatures(), and MChangeMap(). When afeature is
added to a geographic display using MAddFeature(s)() or MChangeMap(),it
features even if the feature is not currently viewable. Chart Clients can modify the
attributes used to render a viewable feature using the MM odifyFeature() and MMo

difyFeatures() calls.

A hitmask of FeatureAttributes is saved, along with the FeatureAttributes
themselves for each feature in the display list. This bitmask issmply a
representation of those features which have been supplied by a Chart Client, and
gets modified using the MM odifyFeature(s)() calls. The ModificationMode
expresses how the attributes supplied in the current MM odifyFeature(s)() call
affects the feature attributes on the display list.

For example, when set to ModifyAnd, only those feature attributes common to the
FeatureAttributes structure in the supplied command, and to the FeatureAttributes
structure in the display list, are updated.

The supported values for modification mode are the following:

ModifyAnd
ModifyAnd indicates that only those fields in the supplied FeatureAttri
butes which are in common with the current set of Client FeatureAttributes
are to be modified. The feature modification bitmask is not updated in this
case because no new fields are modified.

ModifyOr
ModifyOr indicates that those fields supplied in the FeatureAttributesfP
structure are to be

unconditionally modified. The feature attributes modification mask is
updated to indicate that these fields have been set by a Chart Client.

ModifyXor

229

ModifyXor indicates that only those fields which haven't been previousy m
odified, and which are being modified now, are to be modified. The feature
attributes modification mask is updated to indicat that these fields have
been set by a Chart Client.

ModifySet
ModifySet is used to unconditionaly set the FeatureAttributesto the
supplied values. The feature modification mask is set to the mask value
supplied with the FeatureAttributes in this call.

Note that fields within the FeatureAttributes structure which the Chart Client(s) fail to
specify take on their default values, which are usually supplied by the responsible
(rendering) Draw Module. For the most part, these values are the best combination of
attributes for rendering the particular feature. User customization is available, using these
calls, however.

ERRORS
BadChannel
An invalid channel id was used.

Badwindowl!d
An invalid window id was used.

BadValueError
Aninvalid or non-existent feature value was specified. Also occursif a bad
ModificationMode is specified.

SEE ALSO
MAddFeature(3Map), MAddFeatures(3Map), MChangeMap(3Map), M FeatAtts(3Map),
MFeatMask(3Map), MM odifyFeature(3Map), MRemoveFeature(3Map),
MRemoveFeatures(3Map), MuReference(3Mu)

230

MModifyObiject

FUNCTION
Modify an already existing object through animation.

SYNTAX
C Interface
void MM odifyObject(channel, object, animation type, flags, modifier)
Channel channdl;
Objectld object;
int animation type;
int flags,
int modifier;

ARGUMENTS
channel Specifies the connection to Cartographer; returned
from M OpenChannel().

object Specifiesthe ID of the object to be modified.
This object must be a Drawable.

animation type
Specifies the type of modification desired on the object. Legal values for
this field depends on the object being modified. Possible values include:

DragObject
Move the entire object.
EndPoint
Moves an object's end point.
InsertLeg

Inserts a new line segment into the object.

MajorAxis
Modifies an object's major axis of rotation.

MinorAxis
Modifies an object’'s minor axis of rotation.

MoveV ertex
Moves one of the object's vertices.
Size

231

Modifies an object's dimensions.
flags Object-specific modifier.
modifier Specifies a particular point, vertex, or leg of an object for certain modification
types.
DESCRIPTION
The MM oadifyObject() function will modify an object of the specified type using animation.
Valid objects which can be modified via animation include:

Arc
This function requires animation type to specify one of three possible modification
types: Size, EndPoint, or DragObject. In the case where animation type is set to
EndPoint, then modifier is set to one of the following :

0 - point at start of arc from true north
1 - point at extent of arc from true north

Box
This function requires animation type to specify one of two possible modification
types: Size or DragObject. In the case where animation type is set to Size, the
modifier value determines which corner of the rectangle is selected for
modification. In the case of a bearing value of 0 degrees, vertex 0 is the upper left
corner, vertex 1 isthe upper right corner, vertex 2 isthe lower right corner, and
vertex 3isthe lower left corner. In all cases the animation will insure that the
rectangular shape is retained.

Circle
This function requires animation type to specify one of two possible modification
types: Size or DragObject.

Ellipse
This function requires animation type to specify one of three possible modification
types: MajorAxis, MinorAxis, or DragObject.

Line
This function requires animation type to specify End- Point, and for modifier to
specify O or 1 to indicate which endpoint should be modified.

Polygon
This function requires animation type to specify either InsertL eg or MoveV ertex.
In either case, modifier is used for specifying which leg or vertex isto be
modified.

Polyline
This function requires animation type to specify either InsertL eg or MoveV ertex.
In either case, modifier is used for specifying which leg or vertex isto be modified.

Rectangle

232

This function requires animation type to specify End- Point, and for modifier to
specify 0, 1, 2 or 3 to indicate which endpoint on the rectangle should be modified.
Vertex 0 is considered to be the first point specified in the MDrawRectange() call,
or the first point clicked during a Rectangle object crezte.

Sector
This function requires animation type to specify one of two possible modification
types. EndPoint or DragOb- ject. In the case where animation type is set to End-
Point, then modifier is set to one of the following :
0 - point on inner radius at start of arc

1 - point on outer radius at start of arc 2 - point on outer radius at end of arc 3 -
point on inner radius at end of arc.

Text

This function requires animation type to specify Dra- gObject, since the position of
the text is the only thing that can be modified.

MM odifyObject() makes use of the animate keys which are defined by the last call to
MSetAnimateKeys(). If the escape key is pressed anytime during the animate process,
then the animation is aborted, and no modifications are made. New animation points are
selected using either the first button on the input device, or by positioning the cursor at the
desired point and hitting the select key. The finish key does the same thing in this case.

Upon successful modification of an object, an ObjectChangedEvent is sent to the
application which requested the modification.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid template id was used.
BadOwner

An animation is already under way.
BadValueError
Aninvalid object type was specified.

ObjectNotVisble
The object to be modified is not visible on the screen. All modified objects must be
visible.

SEE ALSO

233

MADbortAnimation(3C), MCreateObject(3C), MEvents(3C), MObjAtts(3C),
M SetAnimateK eys(3C)

234

MMoveObject

FUNCTION
Move an object in a window.

SYNTAX
C Interface
void MMoveObject(channel, object, move info);
Channel channdl;
Objectld object;
MapSetMoveAttributes *move info;
ARGUMENTS
channel Specifies the connection to Cartographer; returned

from M OpenChannel().

object Object Id of the object to be moved.

move info A description of where to move the object.

DESCRIPTION
The MMoveObject() function moves an object on the Map. The move info structure
describes how to move the object. The new position of the object can be determined in
severa ways. Thefirst element (move type) of the move info structure determines how
the object will be moved. Shown below is alist of possible values and their meaning.

MoveAbsolute
the object is moved to the point specified in location.

MoveRelative
the point specified in location is added to the current location of the object.

MoveBearing
The new location for the object is calculated using the bearing and distance
elements of the structure.

STRUCTURES
C Interface

typedef struct {
int move_type;
MapPoint position;
} SetMovePosition;

235

typedef struct {
int move_type;
FLOAT distance;
FLOAT bearing;
} SetMoveBearing;

typedef union {
int move_type;
SetMovePosition absolute;
SetMovePosition relative;
SetMoveBearing bearing;
} MapSetMoveAttributes,

ERRORS
BadChannel
Aninvalid channel id was used.
BadObjectld
An invalid object id was used.
BadValueError
An invalid move type was specified.
SEE ALSO
M CreateObject(3C), MDestroyObject(3C), MDestroyList(3C),
MM odifyObject(3C)

236

MNextEvent

FUNCTION
Get the next event from the event queue.

SYNTAX
C Interface
void MNextEvent(report)
MapEvent *report;
ARGUMENTS

report The next event in the queue.

DESCRIPTION
The MNextEvent function copies the first event from the event queue into the specified
MapEvent structure and then removes it from the queue. If the event queue is empty,
MNextEvent blocks until an event isreceived. MNextEvent is set up to receive events
from more than one MapServer if the application happens to be connected to more than
one.

SEE ALSO
MOpenChannel (3C), MPending(3C), MPutBackEvent(3C)

237

MNoOp

FUNCTION
No action is perfomed by Cartographer.
SYNTAX
C Interface
void MNoOp(channel)
Channel channel;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
from MOpenChannel.
DESCRIPTION

The MNoOp function causes no actions in Cartographer and is provided mainly to
exercise the communication channel.

ERRORS
BadChannel
An invalid channel id was used.
SEE ALSO

MOpenChannel (3C), M CloseChannel(3C)

238

MOpenChannel

FUNCTION

Open a channel for communication to Cartographer.
SYNTAX

C Interface

Channel MOpenChannel(node)
char *node;

ARGUMENTS

node The name of the machine to connect to.
DESCRIPTION

The MOpenChannel function opens a channel for communication between the
Cartographer Client and Cartographer. A Channel ID is returned and is used to reference
the connection with Cartographer. Every call made to the library requires a channel
identifier as a parameter. If the library is unable to connect to Cartographer, then
InvalidChannel is returned.

If the node parameter is NULL, MOpenChannel will attempt to connect to Cartographer
on the same machine as the Client.

RETURN VALUE
Upon successful connection, the channel 1D of the connection is returned; otherwise
| nvalidChannel is returned.

ERRORS
OutofMemory
Unable to allocate space for this channel. No memory left.
AlreadyConnected
The Cartographer Client already has an open connection to this Cartographer
Manager. No more than one connection per Cartographer Manager is allowed for
each Cartographer Client.
SEE ALSO

M CloseChannel (3C)

239

MPending

FUNCTION
Return the number of pending Map events.

SYNTAX
C Interface
int MPending()

DESCRIPTION
The MPending function returns the number of input events
that have been received from Cartographer, but not yet
removed from the event queue.

RETURN
The function returns the number of events still on the event queue. A valueof Ois
returned if no events are presently on the queue.

SEE ALSO
M PutBackEvent(3C)

240

MPixelsToPosition

FUNCTION
Convert awindow point to geodetic coordinates (lat/long).
SYNTAX
C Interface
Boolean M PixelsToPosition (channel, window, i1, p1) Channel channel;
Windowld window;
IntMapPoint *i1;
MapPoint *pl: /* RETURN */
channel The connection to Cartographer; returned from
M OpenChannel.
window The window to be queried.
il The point to be converted, in window coordinates.
pl The geodetic coordinates value of the point.
DESCRIPTION

The MPixelsToPosition function converts a pixel point on the geographic display to its
geodetic coordinates. |If the specified pixel position does not correspond to a point on the
viewable geographic display surface, then False is returned; otherwise True is returned.
The current projection and scale are taken into account when converting the pixel location
to ageodetic coordinate. The pixel locations are mapped to the current geographic
display window space, where (0,0) represents the upper left hand corner of the window,
and (width, height) represents the lower right hand corner. Negative pixel values
represent points above and to the left of the upper left hand corner, and may be valid
provided that the viewable geographic display space extends beyond the corners of the
window. Likewise, values greater than width or height may occur if the viewable map
space extends below or to the right of the window.

RETURN
The value True is returned when a valid conversion takes place, and the pixel location lies
on top of the viewable geographic display space. The value False is returned when the
pixel location lies outside the viewable geographic display space, or is otherwise not
convertible.

ERRORS
BadChannel
An invalid channel id was used.

241

Badwindowl!d
The window id used was invalid.

BadValueError
The value (in window coordinates) was invalid.

SEE ALSO
MPositionToPixels(3C),

242

MPositionToPixels

FUNCTION
Convert a geodedic coordinate (lat/long) point to pixel coordinates.
SYNTAX
C Interface
Boolean MPositionToPixels(channel, window, pl, i1) Channel channel;
Windowld window;
MapPoint *p1;
IntMapPoint *il; /* RETURN */
ARGUMENTS
channel The connection to Cartographer; returned from
M OpenChannel.
window The window Id of the window to query.
pl The geodedic coordinate point to be converted.
il The location of the point in window coordinates.
DESCRIPTION

The MPositionT oPixels function converts a geodedic coordinate point to window

coordinates. The point is not guaranteed to be in the window. If the point lies within the

bounds of the displayable geographic display surface,
True isreturned; otherwise, False is returned. The conversion takes into account the current
projection and scale of the geographic display. The output pixel values are mapped to the given
window so that the pixel location (0,0) corresponds to the upper left corner of the window, and
the pixel location (width, height) corresponds to the lower right corner of the window. Negative
values for either coordinate may occur if the viewable geographic display space extends above or
to the left of the window. Likewise, values greater than width or height may occur if the viewable
geographic display space extends below or the the right of the window.

RETURN
The function returns a Boolean value indicating whether or

Cartographer Interfacelast change: June 1995 1

MPositionToPixels(3C)tographer Reference ManualsitionT oPixels(3C)

not the point lies within the viewable space. For example, if the function returns False,
then the point is not viewable on the current geographic display. A value of True indicates

243

that the point does lie on the viewable space.

STRUCTURES
C Interface
typedef struct _IntMapPoint {
int Xx;
int y;
int z
} IntMapPoint, * IntMapPointPtr;

ERRORS
BadChannel
An invalid channel id was used.

Badwindowl!d
The window id used was invalid.

BadValueError
The specified |ocation was invalid.

SEE ALSO
MPixelsToPosition(3C),

244

MPutBackEvent

FUNCTION
Push an event back on the input queue.

SYNTAX
C Interface
void MPutBackEvent(event)
MapEvent * event;
ARGUMENT

event Specifies a pointer to the event to be requeued.

DESCRIPTION
MPutBackEvent pushes an event back onto the head of the input queue (so that it would
become the next one returned by the MNextEvent call). This can be useful if you read an
event and then decide that you would rather deal with it later. Thereisno limit to the
number of times in succession that you can call MPutBackEvent.

SEE ALSO
MNextEvent(3C), MPending(3C), M SendEvent(3C)

245

MQueryChannel

FUNCTION
Get information about a channel.
SYNTAX
C Interface
Channéllnfo * MQueryChannel(channel)
Channél channel;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
by MOpenChannel.
DESCRIPTION

The MQueryChannel provides a Cartographer Client with information on the specified
communications Channel.

RETURN
MQueryChannel() returns a pointer to a Channellnfo structure which is allocated in the C
version. This structure should be freed by calling free when done using the structure.

STRUCTURES
C Interface

typedef struct _Channellnfo {
int num_connections,
int num_windows;
char node]NODE_

246

NAME_LENGTH ;
} Channélinfo;

The contents of the Channellnfo structure are as follows:

num_connections
The current number of connections to Cartographer.

num_windows
The total number of defined windows for this Cartographer Manager.

node The host name of the machine that Cartographer is running on.

ERRORS
BadChannel
The channdl id isinvalid

OutofMemory
Unable to alocate space for Channellnfo structure.

SEE ALSO
MOpenChannel (3C),

247

MQueryFeatures

FUNCTION
Retrieve display list of features for given geographic display.
SYNTAX
C Interface
MapQueryFeatures * MQueryFeatures(channel, window, feature type, feature
subtype)

Channél channel;
Windowld window;
FeatureType feature type; FeatureSubType feature subtype;

channel : in MTypes.Channel; window : in MTypes.Windowl d;
feature type :in MTypes.FeatureType;
feature subtype : in MTypes.FeatureSubType) return
MTypes.MapQueryFeatures,;
ARGUMENTS
channel Specifies the connection to the Chart Manager;
returned from M OpenChannel.

window Specifies the window to be queried.

Specifies the type of feature product to be queried. The value AnyFeature
is supported, and results in querying for all features regardless of type.

feature subtype
Specifies the subtype of feature product to be queried. The value
AnyFeature is supported, and results in querying for all features regardless
of subtype.

DESCRIPTION
The MQueryFeatures routine is used by Chart Clientsto get a current list of displayed
features for a given geographic display (map window). Thisdisplay list may include
features which are not currently visible because certain feature rendering attributes
preclude them from being visible. Refer to the M FeatAtts(3Map) manual page.

RETURN
The MQueryFeatures function returns a description of the features which are currently
displayed in the indicated window. If an error occurs NULL is returned.
MapQueryFeatures is allocated within thisroutine. It is the responsibility

of the calling process to free the memory using MFree (C

248

only).
STRUCTURES

C Interface

typedef struct {
int num_features,
MapFeatureAttributes *features;
} MapQueryFeatures,

The fields for the MapQueryAttributes structure are
described below:

features
A pointer to alist of currently displayed features, and the attributes under which
they have been rendered. A full description of each field in this structure may be
found under M FeatAtts(3Map). There are no built-in limits as to the number of
features which may be returned by an MQueryFeatures() call. In fact, under
certain circumstances the number can be rather large (such as the display of
countries a World View).

num_features
The number of features specified in the features list.

ERRORS
BadChannel
An invalid channel id was used.

Badwindowl!d
The window id used was invalid.

OutOfMemory
Unable to alocate the memory to store the data.

SEE ALSO

M ChangeM ap(3Map), MEvents(3C), MFeatAtts(3Map), MListFeatures(3Map),
MQueryMap(3Map), MuReference(3Mu)

249

MQueryMap

FUNCTION
Get current geographic display attributes for a given map window.
SYNTAX
C Interface
MapQueryAttributes * M QueryMap(channel, window, mode) Channel channel;
Windowld window;
MapBoundaryMode mode;
ARGUMENTS
channel Specifies the connection to the Chart Manager;
returned from M OpenChannel.
window Specifies the window to be queried.
mode Specifies the boundary mode type to be returned.
Valid values are: UseScale, UseWidth, and Use- Boundary. See
MBoundary for more details on the supported modes.
DESCRIPTION

The MQueryMap function is used to obtain the current state of the geographic display.
Thisincludes: the geographic display's coverage, alist of displayed map products, appli-
cable color modelsin use, and the displayed map projection. The feature display list is
NOT included here. Chart Clients needing this information should use the

M QueryFeatures call.

RETURN
The MQueryMap function returns a pointer to a MapQueryAttri- butes structure. If an
error occurs NULL isreturned. The memory to hold the MapQueryAttributes is allocated
within this routine. It isthe responsibility of the calling process to free the memory using
MFree (C only).

STRUCTURES
C Interface

typedef struct {
int num_products;
MapProductAttributes product§ MAX_MAPS]; ProjectionType projection;

MapBoundaryAttributes boundary;

250

int num_colors,
MapColorAttributes colorfMAX_COLOR_MODELS]; FLOAT
zoom factor;

} MapQueryAttributes;

The fields for the MapQueryAttributes structure are
described below:

products
The specifications for the map products in the geographic display. This structure
is described in detail under MProdAtts(3Map). Even though they are they same
structure, the product specification returned by M Quer- yMap tends to be more
specific than that which is provided by M ChangeMap.

num_products

The number of products specified in the products list. This value will not exceed
the Chart Manager constant MAX MAPS.

projection
A projection being displayed. The MProjection(3Map) man page discusses display
projectionsin detail.

color
A list of color specifications for the map display. The M Color(3Map) man page
discusses color modelsin detail. This specification is used only if the CM SetColor
bit is set in value mask.

num_colors
The number of color specifications in the color list.

This value cannot exceed the Chart Manager constant MAX COLOR MODELS.

boundary
The boundaries of the map to be displayed. The MBoundary(3Map) man page
discusses map display boundariesin detail. This specification is used only if the
CM SetBoundary bit is set in value mask.

zoom factor
Thisisthe current zoom factor retrieved by the most recent call to
MQuickZoom(3C). If thisroutine has not been used, then this value will aways
be 1.0. If thisroutine has been used, then this value will lie between 0.0 and 1.0.
In all cases where a quick zoom does occur, the map's boundary attributes are
updated in the boundary fields.

ERRORS

251

BadChannel
An invalid channel id was used.

Badwindowl!d
The window id used was invalid.

OutOfMemory
Unable to alocate the memory to store the data.

SEE ALSO
MBoundary(3Map), M ChangeMap(3Map), MColor(3Map), MEvents(3C),
MFeatAtts(3Map), MListMaps(3Map), MProdAtts(3Map), MProjection(3Map),
MQueryFeatures(3Map), MQuickZoom(3C), MuReference(3Mu)

252

MQueryObject

FUNCTION
Get information about an object.

SYNTAX
C Interface
MapObjectAttributes * M QueryObject(channel, object) Channel channel;
Objectld object;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
from M OpenChannel.
object The object being queried.
DESCRIPTION
MQueryObject is used to query the attributes of the given
object.
RETURN

M QueryObject returns a pointer to a MapObjectAttributes structure. Users of the C
routine must free this space via a call to free when done. If the call fails, then NULL is
returned.

STRUCTURES
C Interface

typedef int ObjectType;

typedef int ObjectSubType;

typedef struct {
ObjectType type;
ObjectSubType subtype;
ObjectAttributes atts;
XRectangle bounding_box;
ObjectData object_data;
} MapObjectAttributes,

The MapObjectAttributes structure contains the following items:

type
The object type. Can be one of Ligt, Class, Template. or Drawable.
subtype

253

The object subtype. Can be one of Arc, Bitmap, Box, Circle, Ellipse, Line,
Polygon, Polyline, Rectangle, Segment, Symbol, or Text.

atts
The ObjectAttributes structure for this object; see MObjAtts(3C) for more detail.
bounding_box
A rectangular bounding box which describes, in pixels, the maximum breadth of
the object on the viewing screen. The structure used to describe thisisan
XRectangle structure, which is described in the M QueryObjectBBox(3C) manual
page.
object_data
Specific data used to create the object. The MObject- Data manual page describes
the ObjectData structure in detall.
ERRORS
BadChannel
Aninvalid channel id was used.
BadObjectld
An invalid object id was used.
SEE ALSO

MObjAtts(3C), MObjectData(3C), MQueryObjectBBox(3C)

254

MQueryObjectBBox

FUNCTION
Get an object's coverage box.

SYNTAX
C Interface
XRectangle * MQueryObjectBBox(channel, window, objects nobjects)
Channel channel;
Windowld window;
Objectld *objects,
int nobjects;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
from M OpenChannel.
window Specifies the window on which the object to query
is currently displayed.
objects The objects being queried.
nobjects
The number of objectsto query.
DESCRIPTION

MQueryObjectBBox is used to query the bounding box coverage of the given objects.
This call is more efficient than the more general purpose M QueryObject() call, when the
Cartographer Client is only interested in the area of coverage for a given object.

RETURN
M QueryObjectBBox returns a pointer to an XRectangle structure. Users of the C routine
must free this space viaacall to free when done. If the call fails, then NULL is returned.

STRUCTURES
C Interface

typedef struct {
short x;
short y;
unsigned short width;

unsigned short height;

255

} XRectangle;

The XRectangle structure contains the following items:

X,y
The object's upper left corner point, in pixels. This point is relative to the upper
left corner of the display pixmap, not the window pixmap, which may or may not
exceed the bounds of the display window.
width, height
The object's extent. Both values are in pixels.
ERRORS
BadChannel
An invalid channel id was used.
BadObjectld
An invalid object id was used.
NOTES

The returned bounding box has values in pixels, relative to the display pixmap. These are
somewhat different than the values returned by M PositionT oPixels(3C), as the display
pixmap is usualy larger than the window size. The scaling between the two pixmapsis
the same, however. Hence only the (x,y) upper left coordinate is affected by this.

SEE ALSO
M QueryObject(3C)

256

MQueryWindow

FUNCTION
Get information about a Map Window.

SYNTAX
C Interface
QueryWindowAttributes * M QueryWindow(channel, window) Channel channel;
Windowld window;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
from M OpenChannel.
window The window to be queried.
DESCRIPTION

The MQueryWindow returns the attributes of the specified window. Refer to
MWindowAtts(3C) for more information on this structure.

RETURNS
The C function returns a NULL pointer in the event that an error occurs. Otherwise a
pointer to a WindowAttributes structure isreturned. For the C interface, the returned
gpace is alocated using malloc. This space should be freed up using free.

ERRORS
BadChannel
An invalid channel id was used.

Badwindowl!d
An invalid window id was used.

BadOwner
The window exists, but this process has never connected to it.

OutofMemory
Unable to alocate space for WindowAttributes structure.

SEE ALSO
M CreateM apWindow(3C), MDestroyWindow(3C),

257

MQuickZoom

FUNCTION
Quickly zoom current view.
SYNTAX
C Interface
void MQuickZoom(channel, window, zoom factor)
Channel channdl;
Windowld window;
FLOAT zoom factor;
ARGUMENTS
channel The connection to Cartographer; returned from
M OpenChannel.
window The window to which the quick zoom is applied.
zoom factor
A relative scale factor at which the map isto be rendered. Valid rangeis
from0.1to 1.0.
DESCRIPTION

MQuickZoom requests that the current view be quickly zoomed. Quick zooming re-
renders the current view using pixel replication. The zooming is aways performed relative
to the scale of the last map drawn. This re-rendering is limited to be 10% of the current
map scale (0.1).

Upon successful completion of this call, interested Clients are sent an
UpdateCoverageNotify event.

ERRORS

AlreadyDrawingMap
A map draw is dready in progress.

BadValueError
A zoom factor outside the range limits was speicified. This might also occur if the
new produced scaling factorsfail.

SEE ALSO
BUGS
MQuickZoom is not all that fast on some machines.

258

MRecenterMap

FUNCTION
Recenter a map.

SYNTAX
C Interface
void MRecenterMap(channel, window, new center) Channel channel;
Windowld window;
MapPoint * new center;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
from MOpenChannel.
window Specifies the window to be queried.
new center
The new point on which to center the map display.
DESCRIPTION

The MRecenterMap function recenters the current map display on the specified point. All
other items remain the same, except for the product list, which may be modified dightly.
The products which are used are the current product list, with the subtype set to AnyMap.
This allows for other map products in the same class to be seamlessly rendered based on
the current location in the world.

ERRORS
SEE ALSO

259

MReleaseFocus

FUNCTION
Release point select focus.
SYNTAX
C Interface
void MReleaseFocus (channel, window)
Channel channdl;
Windowld window;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
by MOpenChannel.
window The window whose focus is being released.
DESCRIPTION

M ReleaseFocus stops PointSelectEvents from being sent to this process. These events are
requested through the call MRequestFocus.

ERRORS
BadChannel
Aninvalid channel id was used.
Badwindowl!d
The window id passed is not valid.
BadOwner
The window is valid and exists, but the user has never connected to it.
SEE ALSO
M CreateM apWindow(3C), MOpenChannel(3C), M SendEvent(3C), M SetEventMask(3C),
MRequestFocus(3C)

260

MReleaseWindow

FUNCTION
Release Cartographer Client as a user of awindow.
SYNTAX
C Interface
void MReleaseWindow(channel, window)
Channel channel;
Windowld window;
ARGUMENTS
channel The connection to Cartographer; returned by MOpen-

Channel.
window The window to be released.

DESCRIPTION
M ReleaseWindow removes this channel as a user of the window. The application will no

longer be sent events about thiswindow. |f this application isthe last user of a window,
the window will be destroyed.

The window's owner is defined to be the Client which created the window. If the
window's owner releases its connection using M Release\WWindow, then the window no
longer has an owner. Other users of the window will be able to continue to use the
window until the last user releases its connection, at which point the window is destroyed.
If the window's owner instead releases its connection using M DestroyWindow, then the
window is unconditionally destroyed, and all other window connections are terminated.

ERRORS
BadChannel
The channdl id was invalid.
BadwWindow!d
The specified window id isinvalid.
BadOwner
The specified window id is valid, but this Client does not have an established
connection to it.
SEE ALSO

MDestroyWindow(3C), MUseNamedWindow(3C), MUseWindow(3C)

261

MReloadSearchPath

FUNCTION
Cause Chart to reload its lists of volumes to search for maps.

SYNTAX

C Interface

void MReloadSearchPath(channel)
Channel channel;

ARGUMENTS

channel Specifies the connection to Chart; returned from

M OpenChannel.

DESCRIPTION

The MReloadSearchPath causes Chart to reload its search path. 1t will look at the
environment variable MapSear- chPath for its list of directories. If thisvariable is not
present, Chart will load the defaults that were specified at compile time. The map search
path can be further modified through the calls MAddV olume and MRemoveV olume.

ENVIRONMENT
MapNoRecursion
When this environment variable is set, only the specified path(s) is/are checked for
map files. Otherwise the specified path(s) and all of its/their subdirectories are
checked.

MapSearchPath
This environment variable islooked at to obtain a path list for loading maps.

ERRORS
BadChannel
An invalid channel id was used.

BUGS
If a Chart Client calls this routine, existing map color resources are freed up. This can
occur even though one or more map windows are present and visible. The colors will be
reallocated upon the next map draw command. In the meantime, some map colors could
unexpectedly change. This effect will only be seen on PseudoColor and GrayScale
machines.

SEE ALSO
MAddV olume(3Map), MRemoveV olume(3Map),

262

MRemoveFeature

FUNCTION
Remove specified feature from a map.

SYNTAX
C Interface
void MRemoveFeature(channel, window, feature)
Channel channdl;
Windowld window;
FeatureProduct *feature;
ARGUMENTS
channel The connection to the Chart Manager; returned from
M OpenChannel.
window The window where intensity isto be set.
feature A map feature to be removed from the map. The
FeatureProduct structure is described below.
DESCRIPTION

MRemoveFeature removes the specified feature from the currently drawn map. The

ML istFeatures(3Map) call provides alist of supported features in the Chart Manager.
This command and others which convert FeatureType types to strings and vice-versa are
documented under MuReference(3Mu).

ERRORS
BadChannel
An invalid channel id was used.

Badwindowl!d
An invalid window id was used.

BadValueError
Aninvalid or non-existent feature value was specified.

SEE ALSO
MAddFeature(3Map), MAddFeatures(3Map), MChangeMap(3Map), M FeatAtts(3Map),
MM odifyFeature(3Map), MM odifyFeatures(3Map), MRemoveFeatures(3Map),
MuReference(3Mu)

263

MRemoveFeatures

FUNCTION
Remove specified features from a map.

SYNTAX
C Interface
void MRemoveFeatures(channel, window, features, nfeatures)
Channel channdl;
Windowld window;
FeatureProduct *features;
int nfeatures,
ARGUMENTS
channel The connection to the Chart Manager; returned from
M OpenChannel.
window The window where intensity isto be set.

features A list of map features to be removed from the map. nfeatures The size of the
feature list specified in feature.

DESCRIPTION
MRemoveFeatures removes the specified features from the currently drawn map. The
ML istFeatures(3Map) call provides alist of supported features in the Chart Manager.
This command and others which convert FeatureProduct typesto strings and vice-versa
are documented under MuReference(3Mu).

ERRORS
BadChannel
An invalid channel id was used.

Badwindowl!d
An invalid window id was used.

BadValueError
Aninvalid or non-existent feature value was specified.

SEE ALSO
MAddFeature(3Map), MAddFeatures(3Map), MChangeMap(3Map), M FeatAtts(3Map),
MM odifyFeature(3Map), MM odifyFeatures(3Map), MRemoveFeature(3Map),
MuReference(3Mu)

264

MRemovelnput

FUNCTION
Remove an input source from the Chart Manager.

SYNTAX
#include <M/Service.h>

void MRemovel nput(fd, mask)
int fd;
int mask;

ARGUMENTS
fd Specifies the source file descriptor on a Unix
based system..

mask Specifies the condition mask that tells when the
routine should be called. Valid entriesfor this field are ServiceReadM ask,
ServiceWriteMask, Ser- viceExceptMask, or ServiceAllMask.

DESCRIPTION
The MRemovel nput() routine removes a monitor for a data source. The callback for the
condition is cleared, even if an input handler has not been previously added.

The condition is specified by a bit field mask. This mask is created by or-ing any of the
following: ServiceReadMask, ServiceWriteMask, or ServiceExceptMask. Also, Servi-
ceAllMask can be specified. Thisis defined to be all three operations.

SEE ALSO
MAddInput(3Map)

265

MRemoveObject

FUNCTION
Remove an object from alist.
SYNTAX
C Interface
void MRemoveObject(channdl, list, object)
Channel channdl;
Objectld list;
Objectld object;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
from MOpenChannel.
list Specifies the list through which to search for the
given object.

object Specifies the object to be removed from the list.

DESCRIPTION
MRemoveObject removes the specified object fromit's list. The ObjectAttributes of both
the object and the List remain unaffected. Also the object that is removed from thelist is
not destroyed.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid object id was used.

SEE ALSO

M AddObject(3C), MDestroyObject(3C), MCreateList(3C),
M ListObjects(3C)

266

MRemoveProduct

FUNCTION
Remove one specified map product from a geographic display.

SYNTAX
C Interface
void MRemoveProduct(channel, window, product)
Channel channdl;
Windowld window;
Productld product;
ARGUMENTS
channel The connection to the Chart Manager; returned from
M OpenChannel.
window The window on which the product is currently
displayed.

product A map product to be removed from the geographic
display.

DESCRIPTION
MRemoveProduct removes the specified product from the currently drawn geographic
display. Products which are drawn on the current display are referenced using Produc-
tids. These values are returned as part of the product's MapProductAttributes structure.

ERRORS

AlreadyDrawingMap
A map draw command is already in progress for the specified window.

BadChannel
An invalid channel id was used.

Badwindowl!d
An invalid window id was used.

BadValueError
Aninvalid or non-existent map product id was specified.

SEE ALSO
MAddProduct(3Map), MAddProducts(3Map), MChangeMap(3Map), MProdAtts(3Map),
MRemoveProducts(3Map), MuReference(3Mu)

267

MRemoveProducts

FUNCTION
Remove specified list of map products from a geographc display.
SYNTAX
C Interface
void MRemoveProducts(channel, window, products, npro- ducts)
Channel channdl;
Windowld window;
Productld * products;
int nproducts;
ARGUMENTS
channel The connection to the Chart Manager; returned from
M OpenChannel.
window The window on which the products are currently
displayed.

products A list of map products to be removed from the map display.
nproducts The number of productsin the list.

DESCRIPTION
MRemoveProducts removes the specified products from the currently drawn geographic
display. Products which are drawn on the current display are referenced using Produc-
tids. These values are returned as part of the product's MapProductAttributes structure.

ERRORS

AlreadyDrawingMap
A map draw command is already in progress for the specified window.

BadChannel
An invalid channel id was used.

Badwindowl!d
An invalid window id was used.

BadValueError
Aninvalid or non-existent map product id was specified.

SEE ALSO
MAddProduct(3Map), MAddProducts(3Map), M ChangeMap(3Map),

268

MRemoveProduct(3Map), MuReference(3Mu)

269

MRemoveTimeOut

FUNCTION
Remove an interval timer.

SYNTAX
void MRemoveTimeOut(timer id)
MapTimerld timer id;

ARGUMENTS
timer id Specifiesthe Id for the timout request to be
removed.
DESCRIPTION
The MRemoveTimeOut() routine removes a previoudy added time out. If theid isnot a
valid time out, no action is taken. Note that timeouts are automatically removed once they
trigger. The MAddTimeOut() call returns a MapTimerld which can be used as an input to
this function.

SEE ALSO
MAddTimeOut(3Map)

270

MRemoveVolume

FUNCTION
Remove a volume from the Map Search Path.
SYNTAX
C Interface
void MRemoveV olume(channel, volume)
Channel channel;
char *volume;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
from M OpendChannel.
volume The volume to be removed from the map search path.
DESCRIPTION

The MRemoveV olume removes a volume from the Map Search Path. All the maps that
were present on this volume will no longer be available to the Client.

NOTE: Map products currently displayed on a map window whose source is the removed
volume will have their rendering colors deallocated. On PseudoColor and GrayScale
machines, this may unexpectedly change some map colors until the next map gets drawn.

ERRORS
BadChannel
An invalid channel id was used.

BadValueError
The specified volume is not part of the current map search path.

SEE ALSO
MReloadSearchPath(3Map), MAddV olume(3Map)

271

MReorderMaps

FUNCTION
Reorder specified map products on a geographic display.

SYNTAX
C Interface
void MReorderMaps(channel, window, products, nproducts)
Channel channdl;
Windowld window;
Productld * products;
int nproducts;
ARGUMENTS
channel The connection to the Chart Manager; returned from
M OpenChannel.
window The window on which the product isto be
displayed.

products The reordered list of map productsto be
displayed.

nproducts The number of productsin the list. This should match the number of products
currently displayed.

DESCRIPTION
MReorderM aps redisplays the map products in the specified order. The map product
listed first on the list will be displayed first, followed by the product listed second, and so
forth. Hence the product listed last is effectively at the top of the display. Features and
then objects are redisplayed once the reordering occurs.

ERRORS
AlreadyDrawingMap
A map draw command is already in progress for the specified window.

BadChannel
An invalid channel id was used.

Badwindowl!d
An invalid window id was used.
BadV alueError

272

Aninvalid or non-existent map product id was specified, or the total number of ids
is not equal to the current number of displayed map products.

SEE ALSO
MAddProducts(3Map), MChangeMap(3Map), MProdAtts(3Map),
MRemoveProducts(3Map), MuReference(3Mu)

273

MRequestFocus

FUNCTION
Request map focus.

SYNTAX
C Interface
void MRequestFocus (channel, window)
Channel channel;
Windowld window;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
from MOpenChannel.
window The window whose focus is being requested.
DESCRIPTION

MReqguestFocus requests that PointSelectEvents be sent to this processfirst. These
events will only be sent if the process has its PointSelectMask set in its event mask. If no
process requests focus, then the default is to have PointSelectEvents sent to the process
which originally created the window.

ERRORS
BadChannel
An invalid channel id was used.

BadWindowlId
The window id passed is not valid.

BadOwner
A user requested focus on awindow to which no connection has been made, or
else a user request focus on awindow where no PointSelect events have been
requested.

SEE ALSO
M CreateM apWindow(3C), MOpenChannel(3C), M SendEvent(3C), M SetEventMask(3C),
MReleaseFocus(3C)

274

MRestoreCursor

FUNCTION
Change cursor to the normal cursor.

SYNTAX
C Interface
void MRestoreCursor(channel, window)
Channel channel;
Windowld window;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
by MOpenChannel.
window Specifies the window whose cursor stateisto be
Set.
DESCRIPTION

The MRestoreCursor function restores the cursor to its normal state. The normal stateis
an object select state, with a cross hair cursor being displayed.

ERRORS
BadChannel
An invalid channel id was used.

Badwindowl!d
An invalid window id was used.

SEE ALSO
M SetCursorMode(3C)

275

MScaleMap

FUNCTION
Rescale a map.
SYNTAX
C Interface
void M ScaleMap(channel, window, scale factor)
Channel channel;
Windowld window;
FLOAT scaefactor;
ARGUMENTS
channel Specifies the connection to the Chart Manager;
returned from M OpenChannel.
window Specifies the window to be queried.
scale factor
A scale factor at which the map isto be redrawn. Value is relative to the
currently displayed map. For example, a scale factor of 2.0 will result in
coverage approximately twice as large as the current coverage, and a scale
factor of 0.5 will result in coverage approximately half the current
coverage.
DESCRIPTION

The M ScaleMap function scales the currently displayed map
using scale factor as arelative scaling value to the current map. The current map center,
coloring and projection are all maintained. The product list used is the current list of
products with the subtype field set to AnyMap. This enables map productsin the same
classto be automatically switched based on the current scale in effect.

ERRORS

This routine can generate just about the same set of errors as the M ChangeM ap command.
Refer to that command for more information.

SEE ALSO
M ChangeM ap(3Map), MuReference(3Mu)

276

MSendEvent

FUNCTION
Send a map event to other users of awindow.

SYNTAX
C Interface
void M SendEvent(channel, window, event, extra data) Channel channel;
Windowld window;
MapEvent * event;
Boolean extradata;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
from M OpenChannel.
window The window where the event occurs.

event The event structure to send.

event size
The size fo the event structure.
extra data
Indiciates whether or not extra datais to be sent with the event. Set this
value to True only if extradataisto be sent along with the event (see Note
2 below). Set thisvalue to False otherwise.
DESCRIPTION

The M SendEvent function sends the specified event to other users of a map window.
Only Client programs with MapUserEventMask set will receive these events. This can be
used as a means for communicating information between processes connected to a
common map window. The MapEvent structure is defined in MEvents.

Note 1. The MapEvents structure is not checked for validity, since there could be user
defined events not defined in the MapEvents structure. The first five fields however,
MUST, repeat MUST, match the MapGenericEvent structure, as all events are assumed to
include these fields. The event type field should be set to a value greater than or equal to
UserEvent.

Note 2: The sent event's size can be no larger than the size

277

of the MapEvent structure. This structure is a union of a number of other specific
Cartographer Manager events. |f your program wishes to pass a user event which is
larger than this value, then it can be sent as extra data as follows:

a) Allocate space for the information to be sent. Set the extra data field in the
GenericEvent structure to the address of this space. Set the extra bytes field in the
GenericEvent structure to the size (in bytes) of the extra data to be sent.

b) Set the extra data parameter passed to the MSen- dEvent call to True.

Note 3: Thereisno provision currently for Clients using this mechanism. Indeed, the
burden is on the Clients to ensure that user event types do NOT conflict with each other.
Errors may result if the Client tries to send an event whose type is aready defined by
Cartographer (eg. value less than UserEvent).

ERRORS
BadChannel
The channdl id is invalid.

Badwindowl!d
The window id isinvalid.

BadValueError
The specified event type isinvalid.

SEE ALSO
MEvents (3C)

278

MSetAnimateKeys

FUNCTION
Set the control keys used during animation.

SYNTAX
C Interface
#include <X11/keysym.h>
void MSetAnimateKeys(channel, window, select key, finish key, escape key)
Channel channdl;
Windowld window;
int select key;
int finish key;
int escape key;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
from M OpenChannel.
window The id of the window whose attributes are to be
Set.
select key
The key to use for performing SELECT functions during animation.
finish key
The key to use for performing END functions during animation.
escape key
The key to use for performing ESCAPE functions during animation.
DESCRIPTION

MSetAnimateKeys() setsthe current keys used during animation. It can be called at any
time. Keysare set on aper window basis. The 3 keys which are specified are, in fact, X
window Keysym's. Refer to the X window guides for more information on Keysym usage.

Each key takes on a default value if thisroutine is never called. The default key for select
key is XK Return, which

generaly maps to the "Return” key. The default key for finish key is XK KP Enter, which
generally maps to the "Enter" key. The default key for escape key is XK Escape, which
generaly mapsto the "Esc" key.

279

In order for the animation key sequence to work correctly, the three keys must each be
unique. A BadVaueError will occur if thisis not the case.

ERRORS
BadChannel
An invalid channel id was used.

Badwindowl!d
An invalid window was used.

BadValueError
An invalid key was specified.

SEE ALSO
M CreateObject(3C), MCreateText(3C), MModifyObject(3C)

280

MSetAttributes

FUNCTION
Set the attributes of an object.

SYNTAX
C Interface
void M SetAttributes(channel, object, atts, value mask)
Channel channdl;
Objectld object;
ObjectAttributes *atts;
MapVaueMask vaue mask;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
from MOpenChannel.
object Specifies the object for which the attributes will
be set.
ats Specifies the attributes of the object that will
be set.
value mask
Specifies the value mask associated with the attributes that will be set.
DESCRIPTION

M SetAttributes sets the attributes of an object to those specified. Only the attributes with
a corresponding bit in value mask are set. Only the attributes for the object itself are
modified. If object isaList, then the attributes for the List itself are modified, but none of
its children are affected. If object isa Class, then the attributes for the Class are modified,
but the Class members remain unchanged until a call to MUpdateClass is made. |f object
isa Drawable, then the effect on the object isimmediate. If object isa Template, then the
template is redefined for future draw commands.

ERRORS
BadChannel
An invalid channel id was used.
BadObjectld

Aninvalid object id was used.

281

BadV alueError
One or more fidlds in atts contain invalid values.

SEE ALSO
MApplyAttributes(3C), MObjAtts(3C), MObjMask(3C), M SetColor(3C), MSetData(3C),
M SetFill Type(3C), MSetFont(3C), M SetLineStyle(3C), MSetLineType(3C),
M SetPickability(3C), M SetVisihility(3C), MUpdateClass(3C)

282

MSetColor

FUNCTION
Change the color of an object.

SYNTAX
C Interface
void M SetColor(channel, object, color)
Channel channdl;
Objectld object;
char *color;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
from MOpenChannel.

object Theid of the object whose color isto be changed.

color The new color for the object.

DESCRIPTION
M SetColor sets the color of a single object to a named color from the RGB database.
Behavioraly, this call worksin a similar manner to M SetAttributes(). The color must
exist in the X Windows RGB Database. If it does not, the color is not changed, and an
error message is generated.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid object id was used.

BadValueError
Aninvalid color name was specified.

SEE ALSO
MApplyColor(3C), MObjAtts(3C), M SetAttributes(3C),

283

MSetCursorAnnotation

FUNCTION
Set the annotation for the cursor, when in normal cursor mode.

SYNTAX
C Interface
void M SetCursorAnnotation(channel, window,
range cursor, bearing cursor, calculation type,
value mask)
Channel channel;
Windowld window;
CursorState range cursor,
CursorState bearing cursor;
MapLineType calculation type;
MapVaueMask value mask;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
by M OpenChannel().
window Specifies the window whose mode is to be set.
range cursor
Determines whether a circle will be displayed showing the range from the
hook_point. Possible values are: CursorOn, CursorOff and CursorTogdle.
bearing cursor
Determines whether aline will be displayed showing the bearing from the
hook_point. Possible values are: CursorOn, CursorOff and CursorToggle.
calculation type
The method used to calculate disance, either GreatCircle or Rhumbline.
value mask
Indicates which values are to be set.
DESCRIPTION

The M SetCursorAnnotation() routine controls what is drawn on the cursor when the
cursor isin NormalCursorMode. If either

range cursor or bearing cursor is set to CursorOn, a window appears at the bottom of the

284

map display, to the left of the cursor position readout. This window displays the current
hook point, from which the range and bearing are calculated, as well as the current range
and bearing from the hook point.

If bearing cursor is set to CursorOn, then aline is drawn on the screen from the hook
point, to the current cursor location. If range cursor is CursorOn, then acircleis drawn
centered around the hook point with the radius equal to the range from the hook_point to
the current cursor location.

The value mask parameter determines which values for cursor annotation are to be set.
Only the values with a corresponding bit in the value mask will be set. The constants
CARangeCursor, CABearingCursor, and CACalculationType can be used to set the value
mask.

ERRORS
BadChannel
An invalid channel id was used.

Badwindowl!d
An invalid window id was used.

BadValueError
An invalid value was specified for cursor mode.

SEE ALSO
M QueryWindow(3C)

285

MSetCursorMode

FUNCTION

Set the mode of the cursor.

SYNTAX

ARGUMENTS

C Interface
void M SetCursorMode(channel, window, cursor mode) Channel channel;
Windowld window;
MapCursor cursor mode;
channel Specifies the connection to Cartographer; returned
by M OpenChannel().
window Specifies the window whose mode is to be set.
cursor mode
The mode of the cursor.

DESCRIPTION

The MSetCursorMode() command sets the current mode of the cursor to the specified
mode. The shape of the cursor will change, as well as the function of the left mouse
button. The cursor will stay in the specified mode until the action is complete in
Cartographer, or until another call to M SetCursorMode() is made with the cursor mode as
MapNormal- Cursor. Some modes can only be exited by another call. All the modes are
described below.

MapNormal Cursor
Thisisthe norma mode for the cursor, the cursor shape isacross hair. Clicking
on an object generates a ObjectSelectEvent to be sent Clicking on the map gen-
erates a PointSelectEvent.

MapWaitCursor
The cursor shapeis a clock, and no selections are allowed on the map while in this
mode. This mode can only be exited by a mode change typicaly from a call to
M SetCursorMode() or MRestoreCursor().

MapHandCursor
This sets the cursor to Hand Pan mode. In this mode the cursor is shaped like a
hand. Thefirst click on the map attachs the map to the cursor. The map can then
be moved about with the cursor. The second click

286

releases the map, and puts the cursor back into normal cursor mode.

MapRecenterCursor
This setsthe cursor to Recenter mode. The shape of the cursor is alarge dot.
Clicking on a spot causes the map to recenter about this point. After one click, the
mode returns to normal cursor.

MapZoomBoxCursor
This setsthe cursor to Zoom Box mode. The shape of the cursor is four arrows
pointing out. Thefirst click selects a center point for arubber band box. When
released a rubber band box the same dimensions as the window is drawn on the
map. The box will expand to the location of the cursor, retaining the aspect ratio
of the window, until the mouse is clicked a second time. The map will then zoom
in to the area selected, and the mode will return to normal cursor mode.

MapGroupBoxCursor
This sets the cursor to Group Box mode. The shape and actions of the cursor are
the same as MapZoomBoxCursor, except that after the second click, a BoxEvent
is sent back to the application program, as well as an ObjectSelectEvent for every
object that lies within the box. The mode returnsto normal cursor mode after the
second click.

MapAreaSelectCursor
This setsthe cursor to Area Select mode. The shape and actions of the cursor are
the same as MapGroupBoxCursor, except that after the second click, a BoxEvent
is sent back to the application, but no ObjectSelectEvents. This mode returnsto
normal cursor mode after the second click.

The animation keys can affect the cursor mode. The
escape key will ailmost always place the cursor mode back to MapNormalCursor. The
select key and finish key can be used in lieu of the input buttons on the input device for
specifying points in various modes. Y ou can modifiy these keys with the
M SetAnimateKeys() call.

ERRORS
BadChannel
An invalid channel id was used.

Badwindowl!d
An invalid window id was used.
BadV alueError

An invalid value was specified for cursor mode.

SEE ALSO
MRestoreCursor(3Map), M SetAnimateK eys(3C)

287

MSetData

FUNCTION
Set the client data field of an object.

SYNTAX
C Interface
void MSetData(channel, object, client data)
Channel channdl;
Objectld object;
char *client data;
ARGUMENTS
channel The connection to Cartographer; returned from
M OpenChannel.
object Theid of the object whose client data attribute
isto be set.
client data
The value to store in the client data field.
DESCRIPTION

MSetData sets the data field of an object to the specified value. Behaviorally, this call
functionsin a similar manner to M SetAttributes(). The client data field can be any 32 bit
dataitem. Thisitemisreturned to the user when it is requested through M QueryObject,
or by an ObjectSelectEvent.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid object id was used.

SEE ALSO
MApplyData(3C), MObjAtts(3C), M SetAttributes(3C)

288

MSetEventHandler

FUNCTION
Set/modify map event handler.

SYNTAX
C Interface
void M SetEventHandler(handler)
MCallbackProc handler;

handler The name of the procedure to call whenever an
event occurs.

DESCRIPTION
The MSetEventHandler specifies a procedure to be called when events from the Chart
Manager are received by this Client. This procedure should be used in conjunction with
MMainLoop(3Map). The callback procedure is expected to return void.

STRUCTURES
C Interface

typedef void * M CallbackProc();

SEE ALSO
MMainLoop(3Map), MAddInput(3Map), MAddTimeOut(3Map),

289

MSetEventMask

FUNCTION
Set/modify event mask.
SYNTAX
C Interface
void M SetEventMask(channel, window, event mask) Channel channel;
Windowld window;
MapVaueMask event mask;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
from M OpenChannel.
window Specifies the window for which the event mask will
be set/modified.
event mask
Specifies the new event mask. A mask of MapAl- [EventsMask indicates
that al events will be received. A mask of MapNoEventsMask indicates
that no events will be received.
DESCRIPTION

The MSetEventMask function specifies a new event mask. Events can be individually
masked out based on a combination of the channel connection, the window, and the
process connected to the channel.

ERRORS
BadChannel
An invalid channel id was used.

Badwindowl!d
An invalid window id was used.

BadOwner
The window exists, but the current process has never connected to it.

SEE ALSO
M CreateM apWindow(3C), MEvents(3C), MEventMask(3C), MNextEvent(3C),
M SendEvent(3C), MUseWindow(3C)

290

MSetFillOffset

FUNCTION
Set the pixel offset of an object and its children.
SYNTAX
C Interface
void M SetFillOffset(channel, object, fill offset) Channel channel;
Objectld object;
int fill offset;
ARGUMENTS
channel The connection to Cartographer; returned from
M OpenChannel.
object Theid of the object whose fill offset isto be
Set.
fill offset
The new pixel fill offset for the object.
DESCRIPTION

M SetFillOffset setsthe fill offset of an object and all of its children. Behavioraly, this call
works in amanner similar to MSetAttributes(). This value provides a starting pixel offset
for objects using Fill Transparent fill type. Refer to MObjAtts(3C) for more information on

this fields.
ERRORS
BadChannel
Aninvalid channel id was used.
BadObjectld
An invalid object id was used.
BadVaueError
Aninvalid fill offset value was specified.
SEE ALSO

MApplyFill Offset(3C), MObjAtt(3C), M SetAttributes(3C)

291

MSetFillType

FUNCTION
Set the fill type of an object.

SYNTAX
C Interface
void M SetFill Type(channel, object, fill type)
Channel channdl;
Objectld object;
MapFillType fill type;
ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

object Theid of the object whosefill typeisto be set.
fill type The new fill type of the object.

DESCRIPTION
M SetFill Type sets thefill type of an object. Behavioradly, this routines functionsin a
similar manner to M SetAttri- butes(). Valid values for fill type are: FllEmpty, FllO-
pague, FillTransparent, FillDotted, FillHorizontal Stripes, FillV ertical Stripes,
FillNegativeSlants, FillPositiveSlants, and FillCrossHatch. If the fill type is FillOpaque, the
object isfilled completely with the color of the object. If thefill type is FillEmpty, only the
border of the object isdrawn. If thefill type is Fill Transparent, then the object isfilled
with a pattern that allows the user to see the map through the object. The pattern whichiis
drawn is afunction of the fill weight and fill offset fields. Refer to MObjAtts(3C) for
more information on these fields.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid object id was used.

BadVaueError
Aninvalid fill type was specified.

SEE ALSO
MApplyFill Type(3C), MObjALts(3C), M SetAttributes(3C)

292

293

MSetFillWeight

FUNCTION
Set the fill weight of an object and its children.

SYNTAX
C Interface
void M SetFillWeight(channel, object, fill weight) Channel channel;
Objectld object;
int fill weight;
ARGUMENTS
channel The connection to Cartographer; returned from
M OpenChannel.
object Theid of the object whose fill weight isto be
Set.
fill weight
The new fill weight of the object.
DESCRIPTION

M SetFillWeight sets the fill weight of an object and all of its children. Behaviorally, this
call worksin amanner similar to M SetAttributes(). The fill weight attribute is applied
only when fill type is set to FillTransparent. Refer to MObjAtts(3C) for more information
on how this works.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid object id was used.

BadVaueError
Aninvalid fill weight was specified.

SEE ALSO
MA pplyFillWeight(3C), MObjAtts(3C), M SetAttributes(3C)

294

MSetFont

FUNCTION
Set the font of an object.
SYNTAX
C Interface
void M SetFont(channel, object, font)
Channel channdl;
Objectld object;
char *font;
ARGUMENTS
channel The connection to Cartographer; returned from
M OpenChannel.

object Theid of the object whose font isto be set.

font The name of the new font for the object.

DESCRIPTION
M SetFont sets the object's font to the named font. Behaviorally, this routine worksin a

similar manner to M SetAttributes(). If the font name is not valid, the font remains
unchanged, and an error message isissued. If object isnot of type Text or Character,
there is no real change as these are the only two object types that use the font parameter.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid object id was used.

BadValueError
Aninvalid font name was specified.

SEE ALSO
MApplyFont(3C), MObjAtts(3C), M SetAttributes(3C)

295

MSetHiLite

FUNCTION
Highlight/Unhighlight an object.
SYNTAX
C Interface
void M SetHiLite(channel, object, hilite)
Channel channdl;
Objectld object;
Boolean hilite;
ARGUMENTS
channel The connection to Cartographer; returned from

MOpenChannel.

object The object to be highlighted.

hilite The highlight state. If set to True, then the
object will be drawn in the current highlight color of the window. If set to
False, the object will be unhilited, and will be displayed in its own color.

DESCRIPTION
M SetHiL ite causes the object to be displayed in the current highlight color. Behavioraly,
this function works in a manner similar to M SetAttributes(). If object isaList, then this
command has no effect because aList is never actually drawn. The effects of this
command on a Class object will only be seen if MUpdateClasy() is called. The color of
highlighted objects can be changed with the routine M SetHiL iteColor.

ERRORS
BadChannel
An invalid channel id was used.

Badwindowl!d
An invalid window id was used.

BadObjectld
An invalid object id was used.

SEE ALSO
MApplyHiLite(3C), MObjAtts(3C), M SetAttributes(3C),
MU pdateClass(3C)

296

MSetHiLiteColor

FUNCTION
Set the color in which highlighted objects will be displayed.
SYNTAX
C Interface
void MSetHiLiteColor(channel, window, hilite color) Channel channel;
Windowld window;
char *hilite color;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
from M OpenChannel.
window The window whose highlight color isto be set.
hilite color
The new highlight color, must be a valid X Windows color name.
DESCRIPTION

M SetHiL iteColor sets the highlight color of the specified window to the named color. All
objects that are currently highlighted will be changed to this color. The color name must
be avalid name from the X Windows RGB Color Database.

ERRORS
BadChannel
An invalid channel id was used.

Badwindowl!d
An invalid window id was used.

BadValueError
Aninvalid color name was specified.

SEE ALSO
MApplyHiLite(3C), MSetHiLite(3C)

297

MSetintensity

FUNCTION
Set the color intensity on a geographic display.

SYNTAX
C Interface
void M Setlntensity(channel, window, intensity) Channel channel;
Windowld window;

int intensity;

void M SetlIntensityDetail(channel, window, intensity, map, feature)
Channel channdl;
Windowld window;
int intensity;
MapProduct *map;
FeatureProduct *feature;

void M SetIntensityModels(channel, window, atts, natts) Channel channel;
Windowld window;
MapSetintensityDetall *étts;
int natts;

void MResetlI ntensity(channel, window)
Channél channdl;
Windowld window;

ARGUMENTS

channel The connection to the Chart Manager; returned from
M OpenChannel.

window The window where intensity isto be affected.

intensity The new intensity of maps and features, range of 0-255.

map The map product or products whose intensity isto
be set.

feature The feature product or products whose intensity is
to be set.

ats A list of detall intensity color models. See

M Color(3Map) manual page for a description of this structure.

298

natts The size of thelist provided to M SetIntensityMo-
dels().

DESCRIPTION
ChartClients can modify the intensity of displayed maps and features in a map window to
allow better viewing of objects and overlays, or to hi-lite certain maps or features versus
others. Only maps and features which support the intensity color model (eg. alocate
modifiable color resources when rendered) are affected by any of these calls, except when
the itemis rendered, at which point all maps and features are affected.

The M SetIntensity sets the intensity of all map products and features on a geographic
display. The intensity isavalue between 0 and 255. The intensity represents the
maximum value for RGB values in the map or feature product's color map. If the valueis
outside of the valid range, it is forced to the end of the range. The cal basically complies
with previous versions of M Setlntensity() in that all maps and features will have this
intensity. More detailed intensity settings are lost when this call is made.

The MResetIntensityM odels call sets the intensity of all
maps and features to the value specified by the last M Setin- tensity call for this window, or
equivalent. More detailed intensity settings are lost when this call is made.

The M SetintensityDetail call loads a detailed intensity model for a given map window.
Intensity models are sorted internally by Chart from most detailed to least detailed. When
determining the intensity to set a map or feature, the first matching intensity model is used.
For example, when

determining the intensity of a World Vector Shoreline map, a color model which specifies
the intensity of map products { VectorMap, WorldV ectorShorel ine}, will be used before a
color model which specifies the intensity of map products { VectorMap, AnyMap}, which
in turn would take priority over the general intensity model for map products { AnyMap,

AnyMap}.

If the Chart Client is interested in affecting only maps,
then specify a FeatureProduct with feature type and sub type fields set to NoFeature.
Likewise, if the Chart Client isinterested in affecting only features, then specify a Map-
Product with map type and sub type fields set to NoMap.

Specifying a MapProduct with both fields set to AnyMap and a FeatureProduct with both
fields set to AnyFeature is equivalent to the M Setlntensity() call.

If the intensity model already existsin the list for this window, then the existing model's
intensity value is replaced by this model's intensity value, and all displayed maps and
features which match this model are updated.

The M SetintensityModels call acts similarly to the M Setin- tensityDetail call, but this call
allows a Chart Client to specify multiple intensity color models in the same call.

299

ERRORS
BadChannel
An invalid channel id was used.
BadwWindow!d
An invalid window id was used.

BadValueError
An invalid range value was specified.

NOTES
Maps and features which are rendered with colors alocated in a degraded mode may see
odd side effects, such as their intensity being modified by detailed intensity requests for
other maps or features which should normally not effect them. Thisis because their colors
are being shared with other maps and features. They may also see no effect when the
intengity is changed because the colors are alocated read only. A Chart Client has no way
of knowing this information beforehand. Other display hardware prevents intensity from
working due to the way colors are alocated (such as TrueColor machines).

SEE ALSO
M ChangeMap(3Map), M Color(3Map)

300

MSetLineStyle

FUNCTION
Set the line style for an object.

SYNTAX
C Interface
void M SetLineStyle(channel, object, line style) Channel channel;
Objectld object;
MapLineStyle line style;
ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

object The object whose line style is to be changed.

line style
The new line style.

DESCRIPTION
M Setl ineStyle sets the line style attribute to the given value. Behaviorally, this function
works in amanner similar to M SetAttributes(). Valid values for line style include:
MapL ineDashed, MapLineSolid, MapLineDotDashed, MapLineDotted, and
MapL ineDoubleDashed.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
Aninvalid object id was used.

BadValueError
Aninvalid line style was specified.

SEE ALSO
MApplyLineStyle(3C), MObjALts(3C), M SetAttributes(3C)

301

MSetLineType

FUNCTION
Set the line type of an object.
SYNTAX
C Interface
void MSetLineType(channel, object, line type)
Channel channdl;
Objectld object;
MapLineType line type;
ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

object The object whose line type is to be changed.
line type The new line type.

DESCRIPTION
M SetLineType specifies the line type attribute for an object. Behavioraly, this
function works in a manner
smilar to MSetAttributes(). Valid valuesinclude: GreatCircle, RhumbLine, or GeoDesic.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid object id was used.

BadValueError
An invalid line type was specified.

SEE ALSO
MApplyLineType(3C), MObjAtts(3C), M SetAttributes(3C)

302

MSetLineWidth

FUNCTION
Set the line width of an object.
SYNTAX
C Interface
void M SetLineWidth(channel, object, line width) Channel channel;
Objectld object;
int line width;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
from MOpenChannel.

object The object whose line width is to be changed.

ine width

The new line width.

DESCRIPTION
M Setl ineWidth sets an object’s line width attribute. Behaviorally, this function worksin a
manner similar to M SetAttributes(). The line width value is in pixels, and should not be
less than O.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid object id was used.

BadV alueError
An invalid line width value was used.

SEE ALSO
MApplyLineWidth(3C), MObjAtts(3C), M SetAttributes(3C)

303

MSetMapBounds

FUNCTION
Set the geographic display boundary attributes.

SYNTAX

C Interface

void M SetM apBounds(channel, window, bounds)
Channel channel;
Windowld window;
MapBoundaryAttributes *bounds;

ARGUMENTS

channel Specifies the connection to the Chart Manager;

returned from MOpenChannel.

window Specifies the geographic display to be changed.

bounds The new map boundariesto display. See
MBoundary(3Map) for afull description.

DESCRIPTION
The M SetMapBounds command changes the geographic display coverage to the specified
bounds. The projection, features, and color model remain unchanged. Thiscal is
identical to the MChangeMap call, with value mask set to CM SetBoundary. The map
product list used isthe current list of map products with the subtype field set to AnyMap.
This enables map products in the same class to be automatically switched based on the
scale currently in effect.

ERRORS
This routine generates the same set of errors as the MChangeMap command. Refer to
that command for more information.

SEE ALSO
M ChangeM ap(3Map), MuReference(3Mu)

304

MSetMapColors

FUNCTION
Change the foreground and background colors in a geographic display.
SYNTAX
C Interface
void M SetMapColors(channel, window, background, fore- ground)
Channel channel;
Windowld window;
char *background;
char *foreground;
ARGUMENTS
channel Specifies the connection to Cartographer.
window Specifies the window.
background
Specifies the name of the new background color.
foreground
Specifies the name of the new foreground color.
DESCRIPTION

The M SetMapColors function changes the foreground and background colorsin a
geographic display to the newly specified colors. The color names are character strings,
and must be valid X Window RGB Database color names. The color names are used to
search the RGB database to determine the actual RGB values for the specified colors.

Only those map and feature products which support the foreground/background color
model will be affected by this call. This model is currently supported only by vector maps.

ERRORS
BadChannel
An invalid channel id was used.

BadWindowld
The window id passed is not valid.
BadValueError

An invalid foreground or background color name was specified.

305

SEE ALSO
M CreateM apWindow(3C), M SetMapColorsByRGB(3C), MWindowAtts(3C),

306

MSetMapColorsByRGB

FUNCTION
Change the foreground and background colors in a geographic display.

SYNTAX
C Interface
void M SetMapColorsByRGB(channel, window,
band red, band green,
bgnd blue,
fand red, fand green,
fgnd blue)
Channel channel;
Windowld window;
unsigned short band red;
unsigned short band green;
unsigned short band blue;
unsigned short fand red;
unsigned short fand green;
unsigned short fand blue;
ARGUMENTS
channel Specifies the connection to Cartographer.
window Specifies the window.

bgnd red Specifies the red value for the background color.

bgnd green
Specifies the green value for the background color.

band blue Specifies the blue value for the background color.

fand red Specifies the red value for the foreground color.

fand green
Specifies the green value for the foreground color.

fand blue Specifies the blue value for the foreground color.

DESCRIPTION
The M SetMapColorsByRGB function changes the colors of the background and

307

foreground in a geographic display to the newly specified colors. The colors are specified
by providing the red, green, and blue values for the pixel. The values are actually 16 bit
unsigned values as required by X Windows, with only the top eight bits actually used.

Only those map and feature products which support the foreground/background color
model will be affected by this call. This model is currently supported only by vector maps.

ERRORS
BadChannel
An invalid channel id was used.

BadWindowlId
The window id passed is not valid.

SEE ALSO
M SetMapColors(3C), MWindowAtts(3C),

308

MSetMapWidth

FUNCTION
Set the geographic display width.
SYNTAX
C Interface
void M SetMapWidth(channel, window, map width)
Channel channel;
Windowld window;
FLOAT map width;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
from MOpenChannel.
window Specifies the window to be queried.
map width The geographic display width at which the geo-
graphic display isto be drawn. Vaueisin nautical miles.
DESCRIPTION

The M SetMapWidth call sets the geographic display width to the specified value, and
redrawsiit if necessary. This command scales the geographic display relative to the
current width. The geographic display's center, projection, features, and color models do
not change. The map product list used is the current list of map products with the sub-
type field set to AnyMap. This enables map products in the same class to be automatically
switched based on the scale currently in effect.

ERRORS
SEE ALSO

309

MSetObjectData

FUNCTION
Set type-specific data for an object.

SYNTAX
C Interface
void M SetObjectData(channel, object, data, value mask)
Channel channdl;
Objectld object;
ObjectData *data;
MapVaueMask value mask;
channel The connection to Cartographer; returned from
M OpenChannel().
object Theid of the object whose data attribute isto be
Set.
data The type specific datato be used for the object.
value mask
A bit mask indicating which fields are to be set.
DESCRIPTION

M SetObjectData is used for modifying parts of an already existing object. The format of
this routine is general purpose, intended to provide extensive editing capabilities for
objects. In general, once an object is created, itstype (eg. Drawable, List, Class,
Template) and subtype (eg. Ellipse, Circle, etc.) cannot be changed. Hence, when using
this call, care must be made to ensure that the values being changed are appropriate for the
object. Normally, this information should first be obtained from M QueryObject(3C).

The MObjectData(3C) manual page describes the format of the data structure. Only those
fields which have their bits set in the value mask will be modified. The value mask fields
can take on the following values (note that not all values are valid for all objects):

Object Type, Vaue mask, Data element

Arc
OBDCenter : MapPoint center
OBDMajorAxis : double major_axis
OBDMinorAxis : double minor_axis
OBDBearing : double bearing
OBDAnNglel : double anglel
OBDANgle2 : double angle2

310

Bitmap

OBDLocation : MapPoint location
OBDSetBitmap : int width,height
: unsigned char *bmap
OBDAddBitmap : unsigned char *bmap
For OBDAddBIitmap, the size of the bmap data array (width and height)
must be the same as the original bitmap data. OBDXHot int
x_hot
OBDY Hot : int y_hot
XBitmap
OBDLocation : MapPoint location
OBDSetBitmap : int width,height
: Pixmap xbitmap
OBDXHot : int x_hot
OBDYHot : int y_hot
XPixmap
OBDLocation : MapPoint location
OBD SetPixmap : int width,height
OBDXHot : int x_hot
OBDYHot : int y_hot
Pixmap Xpixmap
Pixmap xbitmap
Box
OBDCenter : MapPoint center
OBDWidth : double width
OBDHeight : double height
OBDBearing : double bearing
Character
OBDLocation : MapPoint location
OBDXOffset : double X_offset
OBDY Offset : double y_offset
OBDChar : char c
Circle
OBDCenter : MapPoint center
OBDRadius : double radius
Ellipse
OBDCenter : MapPoint center

311

.
>
D

OBDMagjorAxis
OBDMinorAxis

OBDBearing

OBDPoint1
OBDPoint2

OBDPointOffsetl :

pl_y offset

OBDPointOffset?2 :

p2_y offset
Polygon, Polyline

OBDPointList

Rectangle

Sector

OBDTopLeft

OBDBottomRight :

OBDCenter

OBDRangel
OBDRange2
OBDBearing
OBDAnNglel
OBDANgle2

Slash, Segment

OBDLocation
OBDBearing
OBDAnNglel
OBDLength

Symbol

OBDLocation
OBDSymbol
OBDSize

OBDLocation
OBDXOffset
OBDY Offset
OBDText

double
double
double

MapPoint
MapPoint
pl_x_ offset,

p2_x_offset,

MapPoint
int

MapPoint

MapPoint

MapPoint
double
double
double
double
double

MapPoint
double
double
int

MapPoint
NTDSSymbol
int

MapPoint
double
double
char

int

312

major_axis
minor_axis
bearing

pl
p2

*points
npoints

top_left
bottom_right

center
rangel
range2
bearing
anglel
angle2

location
bearing
angle
length

location
symbol
point_size

location
x_offset
y_offset
*text
ntext

Weather

OBDPointList : MapPoint
int
OBDFront : FrontType
ERRORS
BadChannel
Aninvalid channel id was used.
BadObjectid
An invalid object id was used.
BadValueError
Aninvalid data field was used.
BadMaskValue
Aninvalid value_mask was used.
SEE ALSO

MObjectData(3C), MQueryObject(3C)

313

*points
npoints
front_type

M SetOffset

FUNCTION
Modify atext object's offset.
SYNTAX
C Interface
void M SetOffset(channel, object, xoffset, yoffset) Channel channel;
Objectld object;
int xoffset;
int yoffset;
ARGUMENTS
channel The connection to Cartographer; returned from
M OpenChannel.

object The object whose text field isto be moved.

xoffset The horizontal offset in pixels. Positive values
indicate points to the right of the object location, and negative values
indicate points to the left.

yoffset The vertical offset in pixels. Positive values
indicate points above the object location, and negative values indicate
points below.

DESCRIPTION
M SetOffset modifies a SinglePoint object's offset values, without the overhead of
destroying and creating the object. Using this command on non-single point objects will
cause a BadValueError. Currently the following Drawable objects are SinglePoint objects:
AngleText, Bitmap, Character, Charac- ter16, Segment, Slash, Symbol, and Text.

ERRORS
BadChannel
An invalid channel id was used.
BadObjectld
An invalid object id was used.
BadValueError
The object is not a SinglePoint object.
SEE ALSO

314

MChangeText(3C), MDrawText(3C), M SetObjectData(3C)

FUTURE EXPANSIONS
The MSetOffset command is provided for compatability with earlier systems, and provides
asmplified interface to the M SetObjectData() routine.

315

MSetPickability

FUNCTION
Set the pickability of an object.

SYNTAX
C Interface
void M SetPickability(channel, object, pickable) Channel channdl;
Objectld object;
Boolean pickable;
ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

object Theid of the object whose pickability isto be
Set.

pickable The new pickability of the object. Valid values are Pickable, ParentPickable, and
NotPickable

DESCRIPTION
M SetPickability sets the pickability of an object, and only that object. If object isaList or
a Class, then the pickability is modified only on the ObjectAttributes for the List or Class
object itself. Y ou can affect the Class members by calling MUpdateClass.

The pickability determines whether or not an object is selectable on the window. Inthe
simplest case, an object that is not a member of aList, if the object is selected and it's
pickability is set to either Pickable or ParentPickable, then an ObjectSelectEvent is sent to
the Cartographer Client that owns the object. If the object is not pickable, no event is
sent.

If an object isamember of aList, and is Pickable, then an ObjectSelectEvent is sent to the
Cartographer Client, just asif it were not inaList. If the object is not pickable, then no
event issent. If the object's pickability is set to ParentPickable then the pickability of the
object's parent is checked. If the parent is pickable, then an ObjectSelectEvent is sent with
theid of the List (not the id of the object actually selected). If the List is not pickable, no
event is sent, and if the List is ParentPick- able, then this process continues until an object
isfound that is not pickable, or the top of the object treeis

reached. If thetop List in the object tree is ParentPick- able, then an event is sent to the
Cartographer Client just asif this object were set to Pickable.

316

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
Aninvalid object id was used.
BadValueError
An invalid pickable parameter was specified.
SEE ALSO

M A pplyPickability(3C), MEvents(3C), MObjAtts(3C), MUpdateClass(3C)

317

MSetPixel

FUNCTION
Change the color of an object.

SYNTAX
C Interface
void M SetPixel(channel, object, pixel)
Channel channdl;
Objectld object;
unsigned long pixel;
ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

object Theid of the object whose color isto be changed.
pixel The pixel value of the color for the object.

DESCRIPTION
M SetPixel sets the color of a single object to the specified pixel value. Behavioraly, this
call worksin asimilar manner to M SetAttributes(). The pixel value must be avalid pixel
value for the display. The validity of the color depends on the X Display hardware. Also
Cartographer Clients must ensure that specified pixel colors are managed properly. The
MSetColor is therefore recommended for most cases.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid object id was used.

BadValueError
Aninvalid color value was specified.

SEE ALSO
MApplyColor(3C), MObjAtts(3C), M SetAttributes(3C),

318

MSetPriority

FUNCTION
Set the pixel offset of an object and its children.

SYNTAX
C Interface
void M SetPriority(channel, object, priority)
Channel channdl;
Objectld object;
short priority;
ARGUMENTS
channel The connection to the Chart Manager; returned from
M OpenChannel.

object Theid of the object whose fill offset isto be
Set.

priority The new priority for the object.

DESCRIPTION
M SetPriority sets the priority of an object. The display will be updated to reflect the new
stacking order of the objects. Behaviorally, this call worksin a manner similar to
M SetAttributes(). This value determines the order in which the objects are drawn on the
screen. Refer to MObjAtts(3C) for more information on this field.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid object id was used.

BadValueError
Aninvalid fill offset value was specified.

SEE ALSO
MApplyPriority(3C), MObjAtts(3C), M SetAttributes(3C)

319

MSetSegment

FUNCTION
Change the bearing of a Drawable object of type Segment.

SYNTAX
C Interface
void M SetSegment(channel, object, bearing, length) Channel channel;
Objectld object;
FLOAT bearing;
int length;
ARGUMENTS
channel The connection to Cartographer; returned from
M OpenChannel.
object The location to place the segment.
bearing The bearing of the segment in degrees.
length The length of the segment, in nautical miles.
DESCRIPTION

M SetSegment sets the bearing of the Segment object to the specified value. If the object
is not a Segment drawable, no change is made, and an error message is issued.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid object id was used.

BadV alueError
Aninvalid length was used.

SEE ALSO
MDrawSegment(3C)

320

MSetSymbolSize

FUNCTION
Modify the size of the drawn symbol in a symbol object.
SYNTAX
C Interface
void M SetSymbol Size(channel, object, size)
Channel channdl;
Objectld object;
int size;
ARGUMENTS
channel The connection to the Chart Manager; returned from
M OpenChannel.

object The object whose symbol is to be changed.

sze The new size of the symbol object. Supported
valuesare: Tiny, Small, Medium, Large, Huge, TinyBold, SmallBold,
MediumBold, LargeBold, and HugeBold.

DESCRIPTION
M SetSymbol Size changes the font size for NTDS symbol displayed in a symbol object,
without the overhead of destroying and creating the object. Using this command on non-
symbol objects will cause a BadValueError.

ERRORS
BadChannel
Aninvalid channel id was used.
BadObjectld
An invalid object id was used.
BadVaueError
The object is not a Symbol object.
SEE ALSO

M ChangeSymbol (3C), MDrawSymbol(3C), M SetObjectData(3C)

FUTURE EXPANSIONS
The M SetSymbolSize command is a simplified interface to the M SetObjectData()

function.

321

MSetTemplate

FUNCTION
Selectively copy one object’s attributes to another object.
SYNTAX
C Interface
void MSetTemplate(channel, object, template,
value mask)
Channel channel;
Objectld object;
Objectld template;
MapVaueMask value mask;
ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

object The object whose attributes are to be changed.
template The object whose attributes are to be copied.

value mask
The bit mask representing those ObjectAttributes which are to be copied.
See MObjMask(3C).

DESCRIPTION
M SetTemplate copies the attributes of a Template into an object. Only those attributes
whose bit isset in
value mask will be copied into the object. If object isa Drawable, then the
ObjectAttributes from template are copied to the Drawable, and the graphics are updated.
If object isa List, then the ObjectAttributes for template are copied to the List's
ObjectAttributes, but are not copied to any of its children. Likewise, if object is a Class,
then the ObjectAttributes for template are copied to the ObjectAttri- butes for the Class,
but are not copied to any of the members of the Class. Use MUpdateClass to then update
the members of the Class.

ERRORS
BadChannel
Aninvalid channel id was used.
BadObjectld
An invalid object id was used.
SEE ALSO

322

MApplyTemplate(3C), MObjAtts(3C), M SetAttributes(3C),
MU pdateClass(3C)

323

MSetVisibility

FUNCTION
Set the visibility of an object.
SYNTAX
C Interface
void M SetVisihility(channel, object, visibility) Channel channel;
Objectld object;
Boolean vighility;
ARGUMENTS
channel The connection to Cartographer; returned from
M OpenChannel.
object Theid of the object whose visihbility isto be
Set.
visibility
The new visihility of the object.
DESCRIPTION

M SetVisbility sets the visibility of an object. If an active object's visibility is set to Hidden
or False, then the object is not visible on the map. If an active object's visihility is set to
Visible or True, then the object is visibile on the map. During the time in which an
animated object is being created, but is not yet active, its vishility cannot be altered with
client cals (refer to MCreateOb- ject()). If object isaList, then this routine has no effect
aslists are never actually drawn. If object is a Drawable, then the effect on the object's
visibility isimmediate. If object isa Template, then the visibility state for the template is
redefined. If object isa Class, then the visibility of all members of the class will only be

affected upon calling MUpdateClasy().

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
An invalid object id was used.

SEE ALSO

MApplyVisbility(3C), MObjAtts(3C), M SetAttributes(3C),
MU pdateClass(3C)

324

MSync

FUNCTION
Flush output buffer, and wait until commands have executed.

SYNTAX
C Interface
void MSync(channel)
Channel channel;
ARGUMENTS
channel The connection to Cartographer; returned from
M OpenChannel.
DESCRIPTION
M Sync flushes the output buffer, and then waits until all requests have been received and
processed by Cartographer.
ERRORS
BadChannel
Aninvalid channel id was used.
SEE ALSO

MOpenChannel (3C), M CloseChannel(3C)

325

MUnMapWindow

FUNCTION
Make awindow invisible.

SYNTAX
C Interface
void MUnMapWindow(channel, window)
Channel channel;
Windowld window;
ARGUMENTS
channel Specifies the connection to Cartographer; returned
from MOpenChannel.
window Specifies the window to be made invisible.
DESCRIPTION

The MUnMapWindow removes a window in Cartographer from the screen. The window
has not been destroyed, it is Simply not visible.

ERRORS
BadChannel
An invalid channel id was used.

Badwindowl!d
An invalid window id was used.

SEE ALSO
M CreateM apWindow(3C), MMapWindow(3C), M DestroyWindow(3C)

326

MUpdateClass

FUNCTION
Updates the attributes of Class member objects.
SYNTAX
C Interface
void MUpdateClass(channel, class, value mask)
Channel channel;
Objectld class,
MapVaueMask value mask;
ARGUMENTS
channel Specifies the connection to Cartographer; returned

from MOpenChannel.

class Specifies the object identifier of the Class to be
updated.

value mask
Bit mask inidicating which fields in the Class are to be updated.

DESCRIPTION
MU pdateClass copies a Class object's ObjectAttributes into each of its member objects.
Only the values whose hit is set in the bit mask will be updated. By using this command,
severd fields in a Class can be updated using the MSet... calls. The new ObjectAttributes
can then be simulataneoudly applied to al of the class members using just one call.

This call also works with List objects in a similar manner to Class objects.

ERRORS
BadChannel
An invalid channel id was used.

BadObjectld
The specified object id is not avalid List or Class object.

SEE ALSO

MApplyAttributes(3C), MCreateClass(3C), MObjAtts(3C),
M SetAttributes(3C)

327

MUseNamedWindow

FUNCTION
Register channel as a user of awindow.

SYNTAX
C Interface
Windowld MUseNamedWindow(channel, wname, event mask) Channel channel;
char *wname;
MapVaueMask event mask;
ARGUMENTS
channel The connection to Cartographer; returned by MOpen-
Channel.
wname A pointer to the name of the window to connect to.
This must match the window name field in the Win- dowAttributes
structure for the M CreateMapWindow call. 1f more than one window has
the same name, then the first window encountered with a matching name
will be returned.
event mask
An initial mask of map events of interest to this process.
DESCRIPTION

MUseNamedWindow registers the specified channel as a user of the window. All events
specified within the event mask will be sent to the application.

A Cartographer Client registered as a user of awindow cannot destroy the window. Only
the creator of the window is allowed to destroy the window. If the user makes a call to
MDestroyWindow(), the call will be treated as an M ReleaseWindow() call.

RETURN
If no errors occur, MUseNamedWindow will return the Windowld of the connected
window. If the named window does not exist, or if it cannot be connected to, then the
value InvalidWindowld is returned.

ERRORS
BadChannel
The channdl id was invalid.
BadWindowName
No window with the specified name exists.
SEE ALSO

328

M CreateM apWindow(3C), MDestroyWindow(3C), MEvents(3C), MEventMask(3C),
MReleaseWindow(3C), MUseWindow(3C)

329

MUseWindow

FUNCTION
Register channel as a user of awindow.

SYNTAX
C Interface
Windowld MUseWindow(channel, window, event mask) Channel channel;
Windowld window;
MapVaueMask event mask;
ARGUMENTS
channel The connection to Cartographer; returned by MOpen-
Channel.
window The window to connect to. This value has been
previoudly returned by an M CreateM apWindow call made by another
Cartographer Client.
event mask
An initial mask of map events of interest to this process.
DESCRIPTION

MUseWindow registers the specified channel as a user of the window. All events
specified within the event mask will be sent to the application.

This cal differs from MUseNamedWindow only in the way in which it connectsto a
window (using the Windowld, instead of the window's name). Similar restrictions to
MUseNamedWindow concerning releasing a window's connection apply to this call as
well.

RETURN
The Windowld is returned as verification that the window exists and is accessible to the
caller. The value InvalidWindowld is returned in the event that the specified vaue for
window isinvalid.

ERRORS
BadChannel
The channdl id was invalid.

Badwindowl!d
The window id is invalid.

330

SEE ALSO
MDestroyWindow(3C), MEvents(3C), MEventMask(3C), MReleaseWindow(3C),
MUseNamedWindow(3C)

331

MuAltitude

FUNCTION
Chart Manager altitude utility routines.

SYNTAX
C Interface
FLOAT MuTargetAltitude(atitude, range, angle, radius) FLOAT altitude;
[*1nput*/
FLOAT range; /*Input*/
FLOAT angle; /*Input*/
FLOAT radius;, /*Input*/

FLOAT MuTargetMaxRange(dtitude, target radius) FLOAT dltitude; /* Input*/
FLOAT target; /*Input*/
FLOAT radius;, /*Input*/

ARGUMENTS
atitude The dtitude of the view position.
range The range from the view position to the target.
angle View angle from the view postion.

radius Effective radius of the earth.
target Altitude of the target.
DESCRIPTION
These three routines are unit independent. The return values will be in the units of the
input variables. The radius of the earth can be:
EARTH RADIUS NM
EARTH RADIUS MI
EARTH RADIUS KM

RETURN VALUE

The MuTargetAltitude() function returns the altitude of the target in the respective units.
The MuTargetMaxRange() function returns the maximum range that atarget at the
specified atitude can be seen.

332

MuConvert

FUNCTION
Chart Manager coordinate conversion routines.
SYNTAX
C Interface
int MuGeoMgr(geo, mar)
GEO_COORD *geo; [*Input*/
MGR_COORD *mgr; [* Output*/
int MuMgrGeo(mgr, geo)
MGR_COORD *mgar; [*1nput*/
GEO_COORD *(geo; [*Output*/

int MuGeoUtm(geo, utm)

GEO_COORD *(geo; [*Input*/
UTM_COORD *utm; [*Output*/
int MuUtmGeo(utm, geo)
UTM_COORD *utm; [*Input*/
GEO_COORD *geo; [*Output*/

int MuUtmMgr(utm, mar)

UTM_COORD *utm; [*1nput*/
MGR_COORD *mgr; [* Output*/
int MuMgrutm(mgr, utm)
MGR_COORD *mgar; [*1nput*/
UTM_COORD *utm; [*Output*/

Boolean MuValidMgr(mgr)
MGR_COORD *mgar; [*1nput*/

Boolean MuValidUtm(utm)
UTM_COORD *utm; [*Input*/

Boolean MuValidGeo(Ing, lat)

FLOAT Ing; /*Input*/
FLOAT lat; /*Input*/

333

ARGUMENTS

geo A geodetic coordinate structure.

utm A universal transverse mercator (UTM) coordinate.

mgr A Military Grid Reference (MGR) coordinate.
DESCRIPTION

MuConvert utilities provide a set of routines for converting between various map
coordinate systems. The supported

systemsinclude: Geodetic (GEO), Universal Transverse Mercator (UTM), and Military
Grid Reference (MGR). The routines perform automatic validation checking of their
inputs, and return CMNR SUCCESS if the conversion succeeds, and another status value
if it fails. Failuresin the routines will also place an invalid coordinate value in the result so
that when used as inputs to other routines, failures propogate if the status is not checked.
Routines where the output is a GEO coordinate will also normalize the result so that it
falls between -180.0 and +180.0 degrees longitude, and -90.0 to +90.0 degrees latitude.

The MuValid...() routines check the validity of the input coordinate, and return True if the
coordinate is valid, and False if the coordinate is invalid.

STRUCTURES
C Interface
typedef struct _MapPoint {

double lat;
double lon;
double alt;

} MapPoint, GEO_COORD;

typedef struct utm_coord {
double easting; /*Easting offset*/
double northing; /* Northing offset*/
int sphere; /*UTM spheroid*/
int zone; /*UTM zone*/
} MapUTMPoint, UTM_COORD;

typedef struct mgr_coord {
int easting; /*Easting offset*/
int northing; /* Northing offset*/
short zone; /*MGR world zone*/
char grid east; /*Easting grid point*/ char grid_north; /*Northing grid point*/ char
grid_apha; /*MGR grid alpha*/ char padding[3]; /*Unused padding*/

} MapMGRPoint, MGR_COORD;

334

The GEO COORD structure is used to represent a geodetic point on the earth. All input
values are in degrees. The |atitude field should lie between +84.0 degrees (north) and -
80.0 degrees (south) for conversionsto either UTM or MGR, as polar regions are not
supported. The longitude field should lie between -180.0 degrees (west) and +180.0
degrees (east). Values outside this range are normalized.

The UTM COORD structure is used to represent a Universal Transverse Mercator point
on the earth. The zone field represents the 6 degree longitudinal band on the earth for

this point. 1t should fall between -60 and +60. Use negative values for pointsin the
Southern Hemisphere. The northing field must lie between 0.0 meters and 10 million
meters. The easting field must lie within the span of azone. The spheroid field specifies
the spheroid model to use when performing transformations. The table below specifies the
models which are supported, and the corresponding constant to use:

Spheroid Model Field constant

Airy SphAiry*

Australian National SphAustralianNational
Bessel SphBessel

Clarke 1866 SphClarke1866

Clarke 1880 SphClarke1880

Everest SphEverest
International 1909 Sphinternational 1909
Modified Airy SphModifiedAiry*

Modified Everest SphModifiedEverest*
WGS 1972 SphWGS72

Those models marked with an asterisk are not supported for coordinate
transformations from UTM to MGR.

The macro SphGuess(model)
may be used to provide afirst guess for transforming a UTM coordinate
into either an MGR coordinate or a geodetic coordinate. The transformation will revise
the guess, and provide a more accurate spheroid model for
the point if necessary, and return the actual spheroid used to the caller.

The MGR COORD structure is used to represent a Military Grid Reference
point on the earth.
The zone field represents the 6 degree longitudinal band on the earth
for thispoint. It should fall between +1 and +60.
Do not use negative values for points in the Southern Hemisphere.

335

The grid apha field represents the latitude band for the point on

the earth. Valid grid values are single, upper-case, letters between delineate the 100 sg.
KM area of the earth which the point liesin. Extensive tables are searched during
transformations to insure the validity of these values. Be sure to use upper-case letters.

The easting and northing
fields are metric offsets between 0 and 99,999 from the lower left corner of the grid box.

RETURN STATUS
CMNR SUCCESS
Coordinate conversion successful - no errors.

CMNR BADMERIDIAN
Problems converting specified lat/long point to a
UTM coordinate.

CMNR BADLAT
The specified latitude point is out of range. Valid range is-80.0 to 84.0.

CMNR BADLONG
The specified longitude point is out of range. Valid rangeis-180.0 to
180.0.

CMNR BADUTMZONE
The specified UTM zoneisinvalid. Valid rangeis 1 to 60.

CMNR BADUTMSPHERE
The specified UTM spheroid isinvalid. Valid range is-10 to +10.

CMNR NOMGRGRID
The conversion algorithms failed when trying to find an MGR grid zone for
the specified input GEO or UTM coordinate.

CMNR BADMGRZONE
The specified MGR zoneisinvalid. Valid rangeis 1 to 60.

CMNR BADMGRGRID
The specified MGR grid character isinvalid. Valid rangeis'A’ thru 'X'.
This character must be capitalized.

CMNR BADMGRCOORD
The specified MGR coordinate isinvalid, out of range, or non-existent.

CMNR BADUTMNORTH
The specified UTM northing is out of range. Valid range is 0.0 (Nautical
miles) to 10,000,000.0 Nautical miles.

336

CMNR BADUTM
The specified UTM coordinate is invalid, out of range, or non-existent.

337

FUNCTION

MuDistance

Chart Manager distance utility routines.

SYNTAX

C Interface

#include <M/Mconst.h>"
#include <M/Mtypes.h>

FLOAT MuBearing(pl, p2, gcrl)

MapPoint *pl; /*Input*/
MapPoint *p2; I* Input*/
int gerl; [*1nput*/
FLOAT MuDistance (pl, p2, gcrl) MapPoint *pl; /*Input*/
MapPoint *p2; I* Input*/
int gerl; [*1nput*/

void MuGetPosition(pl, bearing, range, gcrl, p2) MapPoint *pl; /* Input*/
FLOAT bearing; /*Input*/ FLOAT range; /*Input*/
int gerl; [*1nput*/
MapPoint *p2; /* Output*/

void MuGetRangeBearing(pl, p2, gcrl, bearing, range) MapPoint *pl; /* Input*/
MapPoint *p2; I* Input*/
int gerl; [*1nput*/

FLOAT *obearing; /*Output*/ FLOAT *orange; /*Output*/

ARGUMENTS

pl

A pointer to an input MapPoint structure which
describes a geodetic position in degrees.

A pointer to an input MapPoint structure which
describes a second geodetic point in degrees.

A flag which describes the type of line formulated
between the input points. Two values are supported: GresatCircle, and
RhumbLine. GreatCircle mode traces a great circle path between two

338

points, and in fact is the shortest distance between two points. RhumbL ine
mode calculates a straight line distance between two points, but may not be
the shortest distance between two points.

A bearing value, in degrees, from the first input
geodetic position pl.

A range value, in nautical miles, from the first
input geodetic position pl, to the second point.

An output geodetic position, obtained by starting
from point p1, and proceeding along a bearing of bearing degrees, for a
range of range nautical miles.

obearing An output bearing value, in degrees, obtained by determining the bearing

orange

DESCRIPTION

between the input geodetic positions p1 and p2.

An output range value, in nautical miles, obtained
by determining the distance between the input geodetic positions pl and

p2.

The MuBearing() routine returns a bearing value in degrees given two input geodetic
positions points pl1 and p2. The MuDistance() routine returns a distance value in nautical
miles given two input geodetic positions. The gcrl flag indicates the type of route
traversed between the two points. A value of GreatCircle will return the great circle
traversal, and is the shortest distance between two geodetic points. A value of

RhumbL ine will return the linear (bearing/range) traversal distance.

The MuGetPosition() routine returns a geodetic position given an input point pl, and a

bearing and range value. The MuGetRangeBearing() routine returns a bearing and range,
given two input geodetic points pl and p2.

RETURN

MubDistance() returns the distance between the two pointsin Nautical Miles. MuBearing()
returns the bearing between two pointsin degrees.

339

MuError

FUNCTION
Chart Manager standardized error and warning utilities.

SYNTAX
C Interface
int MuAppError(format [, arg...])
char *format; /*Input*/

int MuSysError(format [, arg...])
char *format; /*Input*/

int MuAppWarning(formet [, arg...])
char *format; /*Input*/

int MuSysWarning(formet [, arg...])
char *format; /*Input*/

int MuErrorHandler(channel, window, major code, minor code,
error code, error info)
Channel channdl;
Windowld window;
Protocol major code;

Protocol minor code;
MapStatus error code; MapErrorCodel nformation *error info;

#include <M/MuError.h>

void MuErrorMsg(code [, ag...])
ErrorCodeType code;

void MuSetErrorList(list) ErrorCrossReference *list;

ARGUMENTS
format Any format string accepted by printf(3).

channel The connection to the Chart Manager; returned from
M OpenChannel (3C).
window The window where the error occurred.

340

@

class

DESCRIPTION

The mgjor code number of the generated error.

The minor code code number of the generated error.

The code number of the generated error. Error codes are described in each
Chart Manager M library manual page under the "ERRORS" heading. See
also MError(3C) for a synopsis.

Additional information specified with some errors (specifically map related
errors). See MError(3C) and MChangeMap(3Map).

A specia error code designator. Some error code

designators have one to one correspondence with error status codes
returned by the Chart Manager. Additional error codes are defined within
the Mu library to specify additiona commonly occuring errors. The
programmer can also define an additional set of error codes. The core set
of codes defined by the Mu library is described in the VALUES section of
this manual page.

A crossreference list containing error codes and

error messages. The core set of error codes is described in the VALUES
section of this manual page. The programmer can also specify an addi-
tional set of error codes for a program.

The classification of an error code. Allowed
values are WARNING, ERROR, SEVERE, FATAL, INFOR- MATION,
CONSOLE MSG, and SUCCESS.

The Mu library provides arather extensive set of error processing routines principally
designed to provide Chart Clients with a consistent means of handling errors which
originate from requests to the Chart Manager. As a secondary feature, additionally error
support is provided for exceptions which commonly occur (such as file access problems,
improperly entered data, etc).

The routines MuAppError(), MuAppWarning(), MuSysError(), and MuSysWarning() are
simply routines which process client errors, warnings, system errors, and system warnings
in aconsistent manner.

The MuErrorHandler() routine is a Chart Client error handler routine which can serve as

an input to M SetErrorHandler(3Map).This Chart Manager error codes, in particular the

341

rather involved codes returned by geographic display-related requests.
The MuErrorMsg() routine interprets both Chart Client

MapStatus codes, and additional error codes to provide a core set of error support to a
Chart Client. The VALUES section below describes the error codes supported by the Mu
library. The Chart Client can define additional error codes using the MuSetErrorList()
call. The ErrorCodeType value associates both an error status code, and an error class
into one value. The class alows the Mu library to process errorsin distinct classes
differently. For example, EATAL errors result in the Chart Client process being
terminated, whereas INFORMATION messages allow the Chart Client to continue
processing.

All Mu library error processing calls the program $PROGS/Warning, if it exists. This
resultsin aformatted message being displayed in a X Window. If the Warning utility is
not found the message is printed to stderr. Extralong messages are automatically broken
up onto separate lines, although carriage returns using \n are recognized inside of error

MESSages.

MuAppError() prints out the specified message, preceded by the string "Error - .
MuAppWarning() prints out the specified message, preceded by the string "Warning - .

MuSysError() prints out the specified message, preceded by the string "Error - ", and
followed by the system error message set by errno (see intro(3)). MuSyswWarning() works
similarly, except that the specified message is preceded by the string "Warning - ".

RETURN
MuA ppError(), MuAppWarning(), MuSysError(), and MuSysWarn- ing() return -1 if the
call fails. Otherwise the number of arguments which were printed out as part of the
message is returned.

MuErrorHandler() returns O if the error was processed, and -1 otherwise. When invoked
using the M SetErrorHandler() call this allows for default processing of error codes not
processed by MuErrorHandler().

STRUCTURES
C Interface
typedef int ErrorCodeType;
typedef struct {
ErrorCodeType code;
char *string;
} ErrorCrossReference;

An ErrorCodeType value consists of both an error code value and an error class value.

342

These values are bitwise OR'd together to form the ErrorCodeType. Valid error codes
defined by the Mu library are described in the VALUES section of this manual page.
When defining your own error codes, follow the syntax shown in the file MuError.h. Bear
in mind that code values between 0x0000 and Ox1fff are reserved by the Mu library.

The ErrorCrossReference structure is used to define additional Chart Client error codes.
The structure consists of simply an ErrorCodeType value, and a corresponding error
message. The error message should be in the format suitable for printf(3).When
MuErrorMsg() is invoked with the Error- CodeType value set to this error code, then
sufficient arguments should be included to fill in any values in the error message string.

VALUES
The following error code values are recognized by the MuEr- rorMsg routine. For the
specific error messages, refer to the file MuError.h.

Error code value Default error classParameters

MErrAmbKey ERROR Key word (%s)

MErrBadCoord ERROR Geodetic coordinate specified (%s)

M ErrBadNumber ERROR Specified number (%0s)

MErrBadVersion SEVERE Filename(%s), version(%f), running
version(%of)

MerrBogusValue INFORMATION Vaue name(%s), value (%d)

MErrCVaueRange ERROR Name(%os),value(%s),lower range(%c),upper
range(%oc)

MErrDVaueRange ERROR Name(%os),value(%s),lower
range(%od),upper range(%od)

MErrEndOfFile WARNING Filename(%os)

MErrFileOpen ERROR Filename(%os)

MErrFileRead ERROR Bytes expected to read(%d), bytes read(%d)

MErrFileWrite ERROR Bytes expected to write(%d), bytes
written(%d)

MErrFVaueRange ERROR Value name(%s), value(%os), lower
range(%of), upper range(%f)

MErrGenerd ERROR Any error message. Parametersvary.

MErriIKey ERROR Key word (%s)

MErrNameEXxists ERROR Value name (%s), Key word (%)

MErrNoEnvDef ERROR Environment variable(%s)

MErrNoMaps WARNING Map search path (%s)

MErrNoName ERROR None

MErrNoSuchName ERROR Value name (%s), key word (%0s)

343

MErrPrintFail ERROR Job name (%0s), printer name (%s)
MErrPrinted SUCCESS Job name (%0s), printer name (%s)
MErrRecDeleted SUCCESS Key word (%s)
MErrRecNoDelete ERROR Key word (%s)

MErrSelectNone ERROR None

MErrSelectOne ERROR None

MErrXVaueRange ERROR Name(%os),value(%s),lower

range(%ox),upper range(%ox)

MerrNoSuchMsg SEVERE Undefined message code (reserved)
Thefollowing error codes correspond directly to status

codes received fromthe Chart Manager. All of these codes expect three parameters. a
string which says "Map Product” or "Feature Product”, the product type string, and the
projection string. Note: all other MapStatus codes result in the MErrNoSuchMsg error

message being printed.

Error code value

Default error class

AlreadyDrawingMap INFORMATION
BadMapEntry ERROR
BadServer CONSOLE MSG
BadV alueError CONSOLE MSG
ErrorDrawingFeature WARNING
ErrorDrawingMap WARNING
FeatureNotAvailable INFORMATION
FeatureNotSupported ERROR
MapDrawAborted INFORMATION
MapTooSmall CONSOLE MSG
MaxExtents CONSOLE MSG
MaxScae ERROR
MinScale ERROR
NoMapsDrawn INFORMATION
ProductNotFound WARNING
ProjectionNotSupported ERROR
SystemNotSupported ERROR
TooManyMaps WARNING
UnresponsiveDrawModule WARNING
WorldFitProblem CONSOLE MSG

The following error classes are recognized by the MuEr-

rorMsg() call.

Error class value

CONSOLE_MSG
ERROR

FATAL
INFORMATION
SEVERE
SUCCESS
WARNING

EXAMPLES

Chart Client action

Prints a message and continue processing

Pause until user confirms reading error message
Terminate Chart Client

Continue

Pause until user confirms reading error message
Continue

Continue

#define CClientBadMGRCoord (0x2000 | ERROR)

#define CClientBadUTMCoord (0x2001 | ERROR) ErrorCrossReference ref[] = {

{ CClientBadM GRCoord, "The value %s is an improperly formatted MGR
coordinate"}, { CClientBadUTMCoord, "The value %s is an improperly formatted
UTM coordinate'}, {0, NULL}};

MuSetErrorList (ref);

MSetErrorHandler (MuErrorHandler);

MuErrorMsg (MErrFileOpen, "myfile.dat");

MuErrorMsg (MErrGeneral, "Please specify afile name other than %s’, filename);
MuErrorMsg (CClientBadM GRCoord, mgr_string);

MuAppError ("Do not specify %s for amap name!”, map_name);

ENVIRONMENT
PROGS

Location of Chart Manager executables.

FILES
Warning

If thisfile is present, then a warning window will be

produced. Otherwise, the message is printed to stderr. For the CONSOLE MSG
error class, the message is always printed to stderr.

SEE ALSO

MError(3C), Mulnit(3Mu), stdio(3), printf(3V)

345

MuFont

FUNCTION
Convenvience routines for accessing predefined NTDS fonts.
SYNTAX
C Interface
char *MuPointSizeToFontName(size)
int dze;
int MuPointSizeToWidth(size)
int sze;
ARGUMENTS
sze The constant point size name for the font, e.g.
Small.
DESCRIPTION

These routines return specific information about the predefined NTDS fonts.

MuPointSizeT oFontName() returns the name of the font representing the specified point
size. The string returned should not be modified. MuPointSizeT oWidth() returnsthe
width in pixels of the specified font.

RETURN
MuPointSizeT oFontName() returns the full X window font specification given the input
size. Thisstring value is staticaly assigned, and should NOT be freed using MFree. The
value NULL isreturned if the input sizeis invalid. MuPointSizeT oWidth() returns the
width of each symbol in the specified font (in pixels). The value O is returned if the input
sizeisinvalid.

SEE ALSO
M DrawSymbol(3C)

346

MuGeoPosn

FUNCTION
Chart Manager geo reference position string utility routines.

SYNTAX
C Interface
void MuGeoT oString(string, longitiude, latitude) char *string; /* Output*/
FLOAT longitude; /*Input*/
FLOAT [atitude; /* Input*/
int MuStringToGeo(gtring, latitude, longitude) char *string; /* Input*/
FLOAT *latitude; /*Output*/
FLOAT *longitude; /*Output*/
ARGUMENTS
string The string representation of a geodetic reference

point. The format of thisstring is:
<clon><clat> [<sdon> [<sdat>]]

where
<clon> isa 2 character longitude grid value <clat> is a 2 character
latitude grid value <sdon> is a 2 digit longitude seconds value (0 to
59)
<sdat> isa 2 digit latitude seconds value (0 to 59)

latitude The latitude value in degrees.
longitude The longitude value in degrees.

DESCRIPTION
The MuGeoPosn routines provide conversions from geodetic values to a printable string,
and vice-versa. The format of the string is in the geo-reference grid format, which divides
the world into 24 latitude and 24 longitude bands, with character designations for each
band. Each band in turn is subdivided into 24 sub-bands, and an optional seconds field for
additional precision.

The routine MuGeoT oString() returns a string representation of the input position. The
parameter string must be large enough to accept the output (at least 9 characters). The
input coordinate is normalized to always fall between -180.0 and 180.0 degrees longitude,
and -90.0 to 90.0 degrees latitude. Invalid inputs will result in a string of asterisks.

347

The routine MuStringToGeo() parses the input string and
returns a latitude value and a longitude value if the

position string is valid.

RETURN
MuStringToGeo() returns the value CMNR SUCCESS if the conversion is successful, and
returns CMNR BADFORMAT if the conversion fails. Inthe event of failure, the
returned coordinate is set to (+infinity, +infinity).

348

FUNCTION

Mulnit

Chart Client Initialization Functions.

SYNTAX
C Interface
#include <X 11/Xlib.h>
#include <M/Mlib.h>
#include <M/Quidlifiers.h>
#include <M/Mu.h>
#include <M/Mulnit.h>
int Mulnitialize(argc, argv, inatts, inmask, outatts) int argc; /*Input*/
char **argv; /*Input*/
ClientInputAttributes *inatts;, /*Input*/ MapVaueMask inmask;
[*1nput*/ ClientOutputAttributes * outatts; /* Output*/
void MuTerminate()
ARGUMENTS
argc A count of the number of arguments passed to the
Chart Client when the command is invoked.
argv The NULL terminated list of command line argu-
ments.
inatts A structure which describes special initialization
attributes over and above the default attributes used to initialize the Chart
Client's connection to the Chart Manager.
inmask A bit mask which indicates those fields in inatts
which are being specified. Those fields not specified imply certain default
actions.
outatts A structure containing key fields and values for
communicating with the Chart Manager, and to a connected window.
SEE ALSO
MAddInput(3Map), MAddTimeOut(3Map), MError(3C), MEventMask(3C),

MMainLoop(3Map), MOpenChannel(3C), M SetEventHandler(3Map),
MUseNamedWindow(3C), MUseWindow(3C), MuError(3Mu), MuOption(3Mu),
XOpenDisplay(3X11), execv(3), signal(3)

349

MuMgrPosn

FUNCTION
Chart Manager MGR position string utility routines.
SYNTAX
C Interface
void MuMgrToString (string, mar)
char *˚ /*Output*/ MGR_COORD *mgr; /*Input*/
int MuStringToMgr (string, mar) char * string; /*Input*/ MGR_COORD
*mar; /*Output*/
ARGUMENTS
string The string representation of a Military Grid
Reference System (MGRS) position. The syntax of this string is:
<zone> <adpha> <grid-east><grid-north>[]<easting>[-]<northing>
where
<zone> isthe Universal Transverse Mercator (UTM) zone.
<apha> isthe UTM grid alpha character. <grid-east> is the MGRS
easting grid location character.
<grid-north> isthe MGRS northing grid location character.
<easting> isthe MGRS easting offset value in meters. Valid range
is between 0 and 99999 in increments of 1 meter.
<northing> is the MGRS northing offset value in meters. Valid
range is between 0 and 99999 in increments of 1 meter.
mgr The MGRS coordinate record.
DESCRIPTION

The MuMgrPosn routines provide conversions from MGR COORD records to a printable
string, and vice-versa. The routine MuMgrToString() returns a string representation of
the input position. The parameter string must be large enough to accept the output (at
least 19 characters).

The routine MuStringToMar() parses the input string and returns an MGRS record value
if the position string is valid. The MuStringToMgr() routine calls MuMgrGeo() to validate
the input position. Aninvalid MGR coordinate is guaranteed to be returned if the
MuStringToMagr() call fails.

Likewise, an invalid MGR coordinate will return an asterisk string in the

350

MuMarToString() call.

RETURN
The MuStringToMar() routine returns the value CMNR SUCCESS if the conversion is
successful, and returns one of a number of possible error codes if the conversion fails.
The error codes are explained in detail in the MuConvert(3Mu) manual page.

SEE ALSO
MuConvert(3Mu)

351

MuOption

FUNCTION
Chart Manager option parsing routines.

SYNTAX
C Interface

#include <M/Quidlifiers.n>
int MuQualGetOption(options, args, count,
extra values)
Quadlifiers*options; /*Input*/

char **args, /*Input*/int *count; /*Output*/
char ***extravalues, /*Output*/

char *MuQualGetPgmName()
void MuQualUsage(name, options)

char *name; /*Input*/
Qualifiers * options; /* Input*/

ARGUMENTS
options A pointer to alist of Qualifiers structures.
Each record describes a supported option for this command, and indicates
whether a parameter follows.
args A pointer to alist of strings which specify the
list of input arguments. Thislist must be terminated by aNULL pointing
string.
count A modifiable offset, initially set to the offset
into the string list where parsing should begin, and modified by the
MuQualGetOption() routine as options get parsed.
extra values
A pointer to alist of command lines values which are not tied to an option.
These values will always follow all options on the line, and allow command
syntax such as "command -option <value> <filel> <file2> ...".
name The command name, in string format.
DESCRIPTION

The MuQualGetOption() routine returns the next matching option in the command line.

352

Options are specified using a list of Qualifiers records, each of which contains the option
value, and a modifier. The Qualifiers structure is described in the STRUCTURES section
below.

This routine returns -1 whenever an error occurs during parsing. When an option matches,
the index of the matching option is returned. When an extra parameter is encountered,
MuQualGetOption() returns the value of the highest matching option index, plus 1. When
all arguments have been checked, the routine returns -2. At most one parameter is
supported per option.

The MuQualGetOption() routine should be called successively until the value -2 is
returned, which means that there are no more options to be parsed. When an option is
successfully parsed, the index of the option is returned by this routine, and the option's
value (if any) is placed in the specified address field in the Qualifiers structure. 1f no more
options exist on the line, but additional command line values do exist, then the value equal
to the number of Qual- ifiers records + 1, isreturned, and the parameter

extravaluesis set to the address of the first argv containing the command line values. In
the event that -1 is returned, the caller should most likely print out the command syntax,
using MuQualUsage(), and exit. When errors occur, MuQualGetOption() generaly prints
out an explanation as to the cause.

The MuQualGetPgmName() routine conveniently removes any preceding path name from
acommand line. Generally speaking, the input to this routine should be the value argv[0].

The MuQualUsage() routine conveniently prints out the syntax for the given command.
This routine requires the command name, as well as alist of Qualifiers structures.

RETURN
The MuQualGetPgmName() routine returns a character string containing the name of the
executable. Thisvaueis gtatically assigned and should NOT be freed using

M Free(3Map).

The MuQualGetOption() routine returns the index of the next option on the command
line. Thevalue -1 isreturned whenever an invalid option, or other parsing error occurs.
The value -2 isreturned after the entire command line has been checked.

STRUCTURES
C Interface

typedef enum {
PARAMETER, OPTIONAL_PARAMETER, NOPARAMETER
} ParmRequirements;

typedef struct {
char *option;

353

ParmRequirements optiontype;
char **value;
} Qudlifiers;

The fields for the Quadlifiers structure are defined as follows:

option
A pointer to a string representing the option.

optiontype
The syntax supported. The value PARAMETER means that a parameter is
required, and follows. The value NOPARAM- ETER means that no parameter is
required. The value OPTIONAL PARAMETER meansthat a parameter may
follow, but is not required. In this case, a parameter is not parsed if the next item
specified is an option, or elseisNULL.

value

An address to place an option's value. This should be an address of a pointer to a string.
Since the returned value is one of the argv's, it does not need to allocate space for a string,
since argv pointers are globally defined. This value applicable only if optiontype is set to
PARAMETER.

354

MuPosition

FUNCTION
Chart Manager geodetic position string utility routines.
SYNTAX
C Interface
void MuPositionToString(string, longitude, latitude, format)
char *˚ /*Output*/
FLOAT longitude; [*1nput*/ FLOAT latitude; [*1nput*/ int format;
int MuStringToPosition(string, longitude, latitude) char * string; [*1nput*/
FLOAT *longitude; [*Output*/
FLOAT *|atitude; [*Output*/
ARGUMENTS
string The string representation of a latitude/longitude
combination. In the routine MuStringT oPosition(), the format of this
string is:

<dd>:[<mm>:[<ss>]] [EWNS] <ddd>:[<mm>:[<ss>]][EWNS]

where
<dd> is the whole number of degrees.

<mm> is the number of minutes (0 to 59). <ss> is the number of
seconds (0 to 59).

[NS] isthe latitude hemisphere (N: Northern, S: Southern).
[EW] is the longitude hemisphere (E: Eastern, W: Western).

DESCRIPTION
The MuPosition routines provide conversions from geodetic values to a printable string,
and vice-versa. The routine MuPositionToString() returns a string representation of the
input position. The parameter string must be large enough to accept the output (at least
20 characters). Theinput latitude is normalized to fall between -90 and +90 degrees, and
the input longitude is normalized to fall between -180 and +180 degrees. Aninvalid input
position will result in aformatted asterisk string.

The routine MuStringToPosition() parses the input string and returns a latitude value and
alongitude value if the position string is valid. In the event of an error, MuStringTo-
Position() returns a coordinate value of (+infinity, +infin- ity).

355

RETURN
The MusStringT oPosition() routine returns the value
CMNR SUCCESS if the conversion is successful, and returns
one of the following values if the conversion fails:
CMNR BADFORMAT, CMNR BADLAT, or CMNR BADLONG.

SEE ALSO
MuConvert(3Mu), MuMgrPosn(3Mu), MuUtmPosn(3Mu)

BUGS
The MuPositionToString() routine should accept a string format and length as parameters.
This would make the routine more general purpose. The MuStringT oPosition() should
also accept aformat string for parsing the input location string.

356

MuReference

FUNCTION
Chart Manager category reference routines. Most of these functions operate on
MapReference lists, which are first retrieved using "List" functions. For example,
MuListTypes returns a pointer to alist of type MapReference and the size of thelist is
returned via the argument list. Subsequently, the list and its size may be used in to call
functions such as MuStringToType.

SYNTAX
C Interface
MapReference *MuListType(listsize)

int *listsize;
MapType MuStringToType(string Size) char *gtrin
MapReference * Il_st,
int sze

char *MuTypeToAcronym(value, list, size) unsgned int value;

4

MapReference *i
int size;

char *MuTypeToString(value, list, size) unsigned int value;

MapReference *|ist:
int sSze

int MuAddType(record)

MapReference *record;

unsigned int MuStringToSubType(string, list, size) char *string;

MapReference *|idt;
int sSze

char *MuSubTypeToAcronym(value, filter, list, Size) unsigned int value;

unsigned int filter;
MapReference *ist;
int list;

char *MuSubTypeToString(value, filter, list, size) unsigned int ~ value;

357

unsigned int filter;
MapReference *|idt;
int size
MapStatus MuAddSubType(record)

MapReference *record;
MapReference * MuL istSubTypeg(filter, size)
unsigned int filter;

int *size;
unsigned int MuStringT oProjection(string, list, Size) char *strin
MapReference *|ist;
int Size;
char * MuProjectionToAcronym(value, list, size)

unsigned int category;

MapReference *|idt;
int Size;

char *MuProjectionToString(value, list, size) unsigned int value;

MapReference *|idt;
int Size;

int MuAddProjection(record)
MapReference *record;

MapReference * MuL istProjections(listsize)

int *listsize;
unsigned int MuStringT oFeature(string, Size) char *string;
M apReference *ligt;
int Size;

char *MuFeatureToAcronym(value, list, size) unsigned int value;

MapReference *|idt;
int Size;

char * MuFeatureToString(value, list, size) unsigned int ~ value;

MapReference *|idt;
int Size;

int MuAddFeature(record)

358

MapReference *record:;

MapReference *MuL istFeatures(listsize)
int *listsize;

unsigned int MuStringT oSubFeature(string, list, size)

char *gtring;

MapReference *|j
int sSze

7

char * MuSubFeatureT oAcronym(value, filter, list, Size) unsigned int value;

unsigned int filter;

MapReference *|idt;
int sSze

char * MuSubFeatureToString(value, filter, list, size) unsigned int value;

unsigned int filter;
MapReference *|idt;
int sSze

int MuAddSubFeature(record)
MapReference *record;

MapReference * MuL istSubFeatures(filter, Size)
unsigned int filter;
int *size;

ARGUMENTS
string A valid string representation of the particular
category. The string can be all or part of a category's string representation,
acronym representation, or a combination of both representations. Inthe
latter case, the accepted format is "string (acronym)”. The input string
must be long enough to unambiguously delineate a unique category.
Otherwise the category UnknownValue is returned.

category Theinternal representation for the particular
category.

type An internal representation for a particular

359

category. See DESCRIPTION section below for more information.

list The cross reference list for a particular cross

reference item. Returned by the corresponding MulL.ist... call for that item.
sze The size of the cross reference list. Returned as

a parameter by the corresponding MuL.ist... call.
record A MapReference record which contains information

for adding a record to one of the supported cross reference lists.

listsize A parameter returned by the MuL.ist...() calls which represents the size of the
returned MapReference list.

DESCRIPTION
The Chart Manager categorizes certain items which need to be unique, and internally
represented as integers, and provides services to convert between their internal
representation and an external (string) representation. The items which fall under this
method include: MapType, MapSubType, Pro- jectionType, FeatureType and
FeatureSubType. These items normally use their internal representation for
communication with the Chart Manager (for example, see MProdAtts(3Map)).

Categories can be externally represented either as a string, or as an acronym. The
Mu....ToString() routines provide a string representation for the internal category id. The
Mu....ToAcronym() routines provide an acronym representation for the internal category
id. Both routines return pointersto allocated character strings. C programmers should
free these strings using MFree. If an error occurs while retrieving the references, NULL is
returned.

The MuStringTo....() routines provide a mechanism for converting an external string
representation for a category to its unique internal representation. The returned value can
then be used in the appropriate fields in records sent to the Chart Manager. These strings
can be either the string or acronym representation for an item in a category. Y ou need to
provide only enough of the string to uniquely distinguish the item from other items in the
category. Theformat "string (acronym)" is also accepted. If the string match failsto
match any item in the category, or if the matching algorithm detects an ambiguity, then the
value Unk- nownValue isreturned. Otherwise, the internal id for that item is returned.

The MuAdd...() routines enable the calling module to add the indicated value to the value
list. If the value aready is present on the list, it will not be added again. Since the caller
must have write access to certain files, those files may have their protection set to disable
this capahility.

The MuList....() routines return alist of structures for al itemsin a category. Each record
in the MapReference list contains an internal representation, a string representation, and an

360

acronym representation. The list sizeisreturned in the listsize parameter. \When done
with the list, C users must free it viaacall to MFree.

The MuSubType...() and MuSubFeature...() routines require an additional parameter, the
type. Map subtypes are

categorized by MapType, and must be referenced as such.
When type is set to AnyMap, then this subtype is valid for all map classes (in the case of
MuAddSubType()), and refers to the first entry of this type for the other subtype routines.

Similarly, feature subtypes are categorized by FeatureType, and must be referenced as
such. When type is set to Any- Feature, then this subtype is valid for all feature classes (in
the case of MuAddSubFeature()), and refers to the first entry of this type for other
subfeature routines.

RETURN
The Mu...ToString() and Mu...ToAcronym() routines return a pointer to a string which
must be freed using MFree. Likewise, the MuList...() routines return a pointer to alist of
MapReference structures, which must be freed using M Free.

The MuStringTo...() routines return an internally encoded integer value which uniquely
represents the string. The value UnknownV aue is returned in cases where the the match-
ing algorithm fails. The MuAdd...() routines return NoError on success, and an error
status indicating the cause of failure otherwise.

STRUCTURES
C Interface
typedef struct _MReference {
union {
unsigned int internal;
char code[4];
} vaue
char namg[TYPE_LENGTH+1];
char acronym[ACRONYM_LENGTH+1];
unsigned int typevalue;
} MapReference;
FILES
${ MapClassPath} /MapType. xrf

The cross reference file for the MapType category.

${ MapClassPath} /M apSubType. xrf
The cross reference file for the MapSubType category.

${ MapClassPath} /M apProjection. xrf
The cross reference file for the ProjectionType

361

category.
${ MapClassPath} /M apFeatures. xrf
The cross reference file for the FeatureType category.

${ MapClassPath} /M apSubFeatures. xrf
The cross reference file for the FeatureSubType category.

ENVIRONMENT
MapClassPath
This path specifies the location of Chart Manager cross reference files. 1t must be
defined in order to use the MuReference() routines.

ERRORS
Returned by the MuAdd...() routines:

BadValueError
A supplied address pointer isinvalid.

BadRecord
The cross reference file contains a bad or illegally formatted record.

NoEnvironment
The environment variable "MapClassPath” is not defined.

NoSuchFile
One of the above named files does not exist.

SEE ALSO
MError(3C), MFeatAtts(3Map), MProdAtts(3Map)

362

MuUnits

FUNCTION
Chart Manager units conversion macros.

SYNTAX
C Interface

#include<M/MuUnits.h>

FLOAT DegreesToRadians(arg)
FLOAT RadiansToDegrees(arg)
FLOAT NauticaToMeters(arg)
FLOAT NauticaToKilometers(arg)
FLOAT NauticaToMiles(arg)
FLOAT NauticalToDegrees(arg)
FLOAT MetersToNautical(arg)
FLOAT MetersToFeet(arg)
FLOAT KilometersToNautical(arg)
FLOAT KilometersToMiles(arg)
FLOAT FeetToMeters(arg)
FLOAT MilesToNautical(arg))
FLOAT MilesToKilometers(arg)
FLOAT MilesToMeters(arg)

ARGUMENTS
arg The argument passed is cast to a FLOAT so that any
scalar value will be accepted.

DESCRIPTION
MuUnits utilities provide a set of standard conversion routines for converting units.

RETURN STATUS
All arguments are returned asa FLOAT.

363

MuUtmPosn

FUNCTION
Chart Manager UTM position string utility routines.

SYNTAX
C Interface
void MuUtmToString (string, utm, format)
char *˚ /*Output*/

UTM_COORD *utm; /*Input*/int format; /*Input*/

int MuStringToUtm (string, utm) char *string; [*Input*/ UTM_COORD
*utm; /*Output*/

ARGUMENTS

string The string representation of a civilian Universal
Transverse Mercator (UTM) formatted position. The syntax of this string
Is:

<zone>[,][<spheroid>][,]<northing>[,] <easting>

where
<zone> isthe Universal Transverse Mercator (UTM) zone.
<spheroid> isthe UTM spheroid. Thisfield isoptional, and the
resultant spheroid will be returned from the other information if it is
not supplied. If no spheroid isto be supplied, do not include
commas.
<easting> is the absolute easting in meters. Thisis afloating point
value.

<northing> is the absolute northing in meters. Thisisaso a
floating point value.

utm The UTM coordinate record.

format The format for the printed string. Valid values
are: UtmNoSpheroid and UtmPlusSpheroid.

DESCRIPTION
The MuUtmPosn routines provide conversions from UTM values to a printable string, and
vice-versa. The routine MuUtmTo- String() returns a string representation of the input
position. The parameter string must be large enough to accept the output (at least 25
characters). Two formats are supported: UtmNoSpheroid and UtmPlusSpheroid. |If

364

UtmNoS- pheroid formet is requested, then the UTM position is printed out without the
spheroid value used in the transformation. 1f UtmPlusSpheroid format is requested, then
the spheroid used in the transformation is printed out after the

zone.
The routine MuStringToUtm() parses the input string and returnsa UTM COORD record
value if the position string isvalid. This routine returns the value CMNR SUCCESS if the
conversion is successful, and returns one of a number of possible error codes if the
conversion fails. The error codes are explained in detail in the MuConvert(3Mu) manual
page. The MuStringToUtm() routine calls MuUtmGeo() to validate the parsed position.
The MuStringToUtm() call is guaranteed to return an invalid UTM coordinate if the call
fails for some reason. Likewise, the MuUtmToString() call will return asterisksif the
input UTM coordinate is invalid.

SEE ALSO
MuConvert(3Mu)

NOTES
Both routines should be able to support user defined format strings. This would
circumvent the need to define and support a new format each time one is required.

365

